
Dust: A Blocking-Resistant Internet Transport Protocol
Brandon Wiley

School of Information, University of Texas at Austin

Abstract

Censorship of free speech on the Internet has been an increasing problem as the methods of identifying and filtering
traffic have become more sophisticated. A number of approaches to counteract Internet censorship have been im-
plemented, from censorship-resistant publishing systems to anonymizing proxies. While existing systems provide
protection against some attacks, they fail to provide resistance to blocking of the transport protocol by modern tech-
niques such as Deep Packet Inspection. Dust is proposed as a blocking-resistant Internet protocol designed to be
used in conjunction with existing systems to add resistance to a number of attacks currently in active use to censor
Internet communication.

1. Introduction

The evolution of Internet censorship has been a cycle of
increasingly sophisticated filtering techniques inspiring
new circumvention techniques. Shallow Packet Inspec-
tion filtered primarily based on matching the IP ad-
dresses in packet headers to a blacklist of known IP
addresses. This attack led to the development of
anonymizing proxy networks that hide the true destina-
tion IP address by first routing through proxies with
unknown, and therefore not blacklisted, IPs. Filtering
technology now employs Deep Packet Inspection (DPI)
techniques that can filter out specific Internet protocols
by detecting certain characteristic properties. This has
resulted in censorship-resistant services such as
anonymizing proxies being specifically targeted to be
blocked or throttled. In order to provide censorship re-
sistance, blocking resistance is now necessary to defeat
DPI filtering.

Dust is an Internet protocol designed to provide block-
ing resistance against DPI techniques. Dust uses a novel
out-of-band handshake to establish a secure, blocking-
resistant channel for communication over a filtered
channel. Once a secure channel has been established,
Dust packets are indistinguishable from random packets
and so cannot be filtered by normal techniques. For
attackers that specifically filter random packets an op-
tional “unrandomization” step is used to give the pack-
ets arbitrary statistical properties.

2. Related Work

While a network of proxy nodes can provide protection
against destination IP blacklists, they are still vulner-
able to various forms of DPI protocol fingerprinting.
This problem is dealt with by Kopsell, who proposes a
method to extend existing anonymous publishing sys-

tems to bypass blocking, a property referred to as
"blocking resistance" [10]. Kopsell’s threat model as-
sumes that the attacker has control of only part of the
Internet and that some small amount of unblockable
inbound information can enter, perhaps out of band.
The nodes in Kopsell’s system are volunteer anonymiz-
ing proxies that clients communicate with over in order
to obtain access to a censorship-resistant publishing
system. Clients obtain an invitation to the network, in-
cluding the IP addresses of some proxy nodes, through
a low-bandwidth, unblockable channel.

Kopsell’s proposal used SSL as the communication
channel. Unfortunately, SSL does not offer blocking
resistance when SSL traffic is specifically targeted. Tor
has suffered blocking by two attacks because of its use
of SSL. One attack specifically targeted unique
characteristics of Tor’s SSL handshake and the other
was a general throttling of all SSL traffic [2][9]. While
Tor has subsequently increased the steganographic
strength of its SSL handshake by making it resemble
Apache’s SSL handshake, this protects against only the
first attack and not the second.

2.1. Obfuscated Protocols
An obfuscated protocol, in contrast to a secure protocol,
provides protection from the attacker only so long as
the attacker does not know the details of the encoding.
For instance, BitTorrent clients have implemented three
obfuscating protocols in order to prevent filtering and
throttling of the BitTorrent protocol, the most common
of which is Message Stream Encryption (MSE) [7].
Analysis of packet sizes and the direction of packet
flow have been shown to identify connections obfus-
cated with MSE with 96% accuracy, primarily through
analysis of the statistical properties of the key exchange
[4].

Obfuscated TCP (ObsTCP) has gone through several
versions, the last of which used DNS records to trans-
mit the encryption keys [8]. This required the attacker
to correlate separate communication streams, extracting
the keys from the DNS packets and then applying them
to the TCP packets. However, an analogous attack has
already been demonstrated in the blocking of BitTor-
rent traffic through monitoring of the tracker protocol
traffic to obtain the ports of the BitTorrent protocol
connections [10][7]. A similar proposal called tcpcrypt
is also easily defeated by looking for static strings in the
handshake [1].

Obfuscated-openssh obfuscates the handshake for an
existing secure protocol by replacing the handshake
portion of an SSH protocol connection with a minimal
blocking-resistant encrypted protocol [6]. This hand-
shake is encrypted with a key that is generated by iter-
ated hashes of a seed that is added to the beginning of
the encrypted part of the handshake. The iteration num-
ber is chosen to be high enough that key generation is
slow, so the blocking resistance of this technique relies
on key generation being too expensive to scale to all
connections simultaneously. However, modern filters
are capable of statistically sampling packets and proc-
essing them offline, allowing for the obfusation to be
defeated at least probabilistically. [11].

3. Design

Unlike an obfuscated or steganographic protocol, Dust
is secure even against attackers that know the full de-
tails of the protocol. The difficulty is in negotiating a
secure session key without an unencrypted, filtered
handshake. Fortunately, Kopsell’s model allows for a
single out-of-band invitation to be sent prior to the es-
tablishment of the data connection. This affordance is
the key to creating a protocol which is not merely ob-
fuscated, but rather secure even if the attacker monitors
all other traffic and is aware of the design of the proto-
col.

The Dust protocol implements such a design in order to
provide censorship resistance through protocol unob-
servability. Dust uses out-of-band invitations to per-
form the first part of the cryptographic handshake. In
order to establish protocol unobservability, all packets
consist entirely of encrypted or random, single-use
bytes so as to be indistinguishable from each other and
from random packets. Theoretical attackers that target
random packets are dealt with by an optional second
stage of “unrandomization” using a reverse Huffman
encoder. Table 1 summarizes the various attacks that
Dust is designed to defend against.

As in Kopsell’s model, a peer must first receive an out-
of-band invitation to join the network. This invitation
contains the IP address and public key of the receiver.
The sender can then complete the handshake by sending
a single in-band intro packet. The handshake is now
complete and each side now has the public key of the
other, allowing for a secure session key to be computed.
The parties can now communicate bidirectionally with
any number of data packets encrypted with the session
key that was computed in the handshake. The minimal
Dust conversation therefore consists of two logical in-
band packets: one intro packet, and one data packet.
The protocol specification allows for these packets to
be chained together inside a single UDP or TCP packet.
The use of a single UDP or TCP packet for communica-
tion of short messages prevents timing attacks when the
payload is sufficiently small. For larger payloads, Dust
does not protect against timing attacks based on the
timing of the application layer protocol. However, Dust
does not add its own unique timing characteristics in
the handshake as the handshake consists of only one
packet and therefore is not vulnerable to timing attacks
except those directed at the timing added by applica-
tions using Dust as the underlying transport protocol. It
is the responsibility of the application protocol to con-
trol its timing in such a way that it is difficult to finger-
print.

3.1. Protocol
In order to accept a connection from a new client, a
Dust server must first complete a key exchange with
that client. The Dust server first creates an invite packet
containing the server's IP, port, and public key, and a
newly generated ID and shared secret pair. The invite
must then be communicated to the client out-of-band by
any means that is effective. The invite is encrypted with
a password and so is indistinguishable from random
bytes. It can therefore be safely transmitted, along with
the password, over an out-of-band channel such as
email or instant messaging. It will not be susceptible to
attacks which block email communication containing IP
addresses because only the password is transmitted un-
encrypted. If the invitation channel is under observation
by the attacker, and only in the case that the attacker is
specifically attempting to filter Dust packets, then the
password should be sent by another channel that, while
it can still be observed by the attacker, should be uncor-
related with the invitation channel. For instance, the
password could be delivered in a non-digital form such
as voice or writing.

An important thing to note about the out-of-band chan-
nel for distribution of the invite packet is that

anonymizing proxy networks already require such a
channel for the purpose of proxy discovery. It is already
necessary for communicating the proxy IP and port to
the client without this communication being blocked by
the attacker. Modifying the proxy discovery protocol to
use Dust invite packets instead of plain-text IP and port
pairs is a minimal change and allows for a truly secure
protocol instead of mere obfuscation. The format for
Dust invites is also more resistant to filtering than the
invitations currently in use for anonymizing the proxies.
The worst case for Dust invites is the one in which both
the invite and the password are intercepted, they are
correlated, and the invite is decrypted. The IP of the
receiver and then by added to a blacklist and subse-
quently blocked. This worst cast scenario is equivalent
to the current situation for anonymizing proxies which
use unencrypted invitations.

In order to complete the handshake, the client uses the
IP and port information from the invite packet to send
an intro packet to the server. The first few bytes of the
intro packet contain the random, single-use ID from the
invite packet. The rest of the intro packet is encrypted
with the secret from the invite packet. The payload of
the intro packet is the public key of the client.

When the server receives a packet from an unknown IP
address, it assumes it to be an intro packet and retrieves
the ID from the beginning of the packet. This is used to
look up the associated stored secret. The server uses the
secret to decrypt the packet, retrieves the public key of
the client, and generates a shared session key. It adds
the session key to its list of known hosts, associated
with the IP and port from which the intro packet was
sent. This completes the second phase of the public key
exchange. The client and server can now send and re-
ceive encrypted data packets freely. Since Dust packets
can be chained inside of TCP or UDP packets, the intro
packet may be followed immediately by a data packet.
If the message to be communicated is short, then this
single packet may constitute the entirety of the conver-
sation.

3.2. Packet Format
There are three types of Dust packets: invite, intro, and
data. All three types of packets build upon the basic
Dust packet format. In a basic Dust packet, the MAC is
computed using the ciphertext, initialization vector
(IV), and a key. The type of key used differs depending
on the type of packet. Using a MAC allows for the con-
tents of the packet to be verified against corruption or
tampering. The IV is a single-use random value used to
encrypt the ciphertext and compute the MAC. This en-
sures that the ciphertext and MAC values will be differ-

ent even when sending the same data. Since the IV is
random and the MAC is computed using the IV, both
values are effectively random to an observer. The rest
of the packet, excluding the padding, are encrypted to
form the ciphertext. The ciphertext includes a time-
stamp, lengths for the data and padding, and the data
itself. A separate padding length (PL) value is needed
because several Dust packets may be contained inside a
single UDP or TCP packet. Finally, a random number
of random bytes of padding are added in order to ran-
domize the packet length.

An invite packet contains all of the basic fields such as
MAC, IV, and padding. The key used in an invite
packet to encrypt the ciphertext and compute the MAC
is a derived from a password and random salt value
using a password-based key derivation function
(PBKDF). The salt value is prepended to the encrypted
packet. The use of both salt and a PBKDF makes it
difficult to decrypt the packet by brute force. This pro-
tects the contents of the invite packet against decryption
unless the password is known.

The invite packet includes the information necessary
for the client to connect to the server and complete the
handshake. It contains the server’s public key, the IP
and port where the server can be contacted, a flags byte
which specifies if the connection to the server should be
made using UDP or TCP and whether the IP address is
an IPv4 or IPv6 address, and an ID and secret pair to be
used in the construction of an intro packet.

In an intro packet, the ID is the same as the one re-
ceived in the invite packet. This is effectively a single-
use random value as when it was contained in the invite
packet it was encrypted and it is only seen in plain text
in the intro packet. The ID is used by the server to link
the intro packet to the stored single-use random secret.
This secret is used to encrypt the ciphertext and to
compute the MAC for the intro packet. Since each ID is
a single-use value, only one intro packet can be sent for
each invite packet received by the client. The rest of the
fields in an intro packet are the same as a general Dust
packet. The content of an intro packet is the public key
of the client.

Once the server has obtained the client’s public key
from the intro packet, the key exchange is complete and
a shared session key is computed by both sides for use
in encrypting future data packets. In a data packet, the
content is the data to be sent and the key used to en-
crypt the ciphertext and to compute the MAC is the
shared session key derived from the exchanged public
key and locally stored private key.

4. Discussion

Table 1 summarizes the attacks against the protocol and
the protocol features that protect against those attacks.
The common DPI attacks are covered as well as com-
mon attacks against general protocols such as corrup-
tion and replay of packets. The main theoretical attack
that has been raised against Dust so far is that of statis-
tical sampling and filtering of protocols with high en-
tropy. Since Dust cannot be differentiated by normal
means from other entropy maximizing protocols the
attack must be against all such protocols.

To defend against this attack, recent versions of Dust
include an optional “unrandomization”. The high en-
tropy output of the normal Dust encoder is given to a
reverse Huffman encoder [12], which uses the fre-
quency table from an existing protocol and “decom-
presses” the Dust packet to match that distribution.
Through this process a Dust packet can be given an
arbitrary entropy, thereby defeating high entropy filter-
ing.

Attack Defense
Static strings All fields encrypted

or randomized
Length Randomized padding
Timing Single packet conversations
Corruption Encrypted MAC
Replay Timestamp
Insertion Encrypted MAC
Brute force Salt and PBKDF

High entropy Reverse Huffman Encoding

 Table 1. Attacks and defenses

5. Conclusion

Dust allows for secure communication to be established
without leaking information to the attacker that could
be used to identify and block the protocol. For attackers
that specifically seek to block Dust-like protocols, an
optional second stage of steganographic encoding can
be used, allowing Dust to resemble existing protocols
(when an appropriate encoder is available) while main-
taining its core properties of security and lack of infor-
mation flow to the attacker.

Those wishing to examine or use the Dust protocol for
academic or practical purposes can find the source code
for its implementation at http://github.com/blanu/Dust.

Although the general Dust protocol can use a variety of
algorithms for its cryptography operations, the refer-
ence Dust implementation uses Skein-256-256 for hash,
MAC, PRNG, PBKDF, and cipher functions and the
curve25519 ECDH implementation for generate session
keys from public and private keys. Further specific de-
tails about the implementation of the protocol can be
found in the README at
https://github.com/blanu/Dust/raw/master/README.

6. Acknowledgements

This work was made possible by the generous intellec-
tual contributions of Drake Wilson, Greg Hazel, and
Luis Francisco-Revilla, as well as a grant from the Uni-
versity of Texas at Austin iSchool CDLF program and
the IMLS.

7. References

1. Bittau, A., Hamburg, M., Handley, M., Mazieres, D.,
and Boneh, D. The case for ubiquitous transport-level
encryption. 19th USENIX Security Symposium.,
(2008).

2. Dingledine, R. Tor and circumvention: Lessons
learned. The 26th Chaos Communication Congress,
(2009).

3. Harrison, D. BEP 008: Tracker Peer Obfuscation.
Retrieved from:
http://www.bittorrent.org/beps/bep_0008.html.

4. Hjelmvik, E and John, W. Breaking and Improving
Protocol Obfuscation. Department of Computer Science
and Engineering, Chalmers University of Technology,
Technical Report No. 2010-05, ISSN 1652- 926X.
(2010)

5. Kopsell, S., Hilling, U.: How to Achieve Blocking
Resistance for Existing Systems Enabling Anonymous
Web Surfing. In: Proceedings of the Workshop on Pri-
vacy in the Electronic Society. pp. 103-115. ACM
Press, New York (2004)

6. Leidl, B. Obfuscated-OpenSSH README. Re-
trieved from: https://github.com/brl/obfuscated-
openssh/blob/master/README.obfuscation. (2010)

7. Message Stream Encryption.
http://wiki.vuze.com/w/Message_Stream_Encryption
(2006)

8. Obfuscated TCP. Wikipedia. Retrieved from:
http://en.wikipedia.org/wiki/Obfuscated_TCP. (2010)

9. Sennhauser, M.: The State of Iranian Communica-
tion. http://diode.mbrez.com/docs/SoIN.pdf (2009)

10. Topolsky, R. Comments of Robert M. Topolsky In
the Matter of Petition of Free Press et al. for Declara-
tory Ruling that Degrading an Internet Application Vio-
lates the FCC’s Internet Policy Statement and Does Not
Meet an Exception for “Reasonable Network Manage-
ment”. Federal Communications Commission WC
Docket No. 07-52, 08-7. (2008)

11. Using NetFlow Filtering or Sampling to Select the
Network Traffic to Track. Retrieved from:
http://www.cisco.com/en/US/docs/ios/netflow/configur
ation/guide/nflow_filt_samp_traff.html#wp1064305.
(2006)

12. Wayner, P. Basic Mimicry. In Disappearing
Cryptography: Information Hiding: Steganography &
Watermarking. Morgan Kaufmann, 2008, 87-92.

