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Abstract 
 
Censorship of free speech on the Internet has been an increasing problem as the methods of identifying and filtering 
traffic have become more sophisticated. A number of approaches to counteract Internet censorship have been im-
plemented, from censorship-resistant publishing systems to anonymizing proxies. While existing systems provide 
protection against some attacks, they fail to provide resistance to blocking of the transport protocol by modern tech-
niques such as Deep Packet Inspection. Dust is proposed as a blocking-resistant Internet protocol designed to be 
used in conjunction with existing systems to add resistance to a number of attacks currently in active use to censor 
Internet communication. 

 
1. Introduction 

The evolution of Internet censorship has been a cycle of 
increasingly sophisticated filtering techniques inspiring 
new circumvention techniques. Shallow Packet Inspec-
tion filtered primarily based on matching the IP ad-
dresses in packet headers to a blacklist of known IP 
addresses. This attack led to the development of 
anonymizing proxy networks that hide the true destina-
tion IP address by first routing through proxies with 
unknown, and therefore not blacklisted, IPs. Filtering 
technology now employs Deep Packet Inspection (DPI) 
techniques that can filter out specific Internet protocols 
by detecting certain characteristic properties. This has 
resulted in censorship-resistant services such as 
anonymizing proxies being specifically targeted to be 
blocked or throttled. In order to provide censorship re-
sistance, blocking resistance is now necessary to defeat 
DPI filtering. 

Dust is an Internet protocol designed to provide block-
ing resistance against DPI techniques. Dust uses a novel 
out-of-band handshake to establish a secure, blocking-
resistant channel for communication over a filtered 
channel. Once a secure channel has been established, 
Dust packets are indistinguishable from random packets 
and so cannot be filtered by normal techniques. For 
attackers that specifically filter random packets an op-
tional “unrandomization” step is used to give the pack-
ets arbitrary statistical properties. 

2. Related Work 
 
While a network of proxy nodes can provide protection 
against destination IP blacklists, they are still vulner-
able to various forms of DPI protocol fingerprinting. 
This problem is dealt with by Kopsell, who proposes a 
method to extend existing anonymous publishing sys-

tems to bypass blocking, a property referred to as 
"blocking resistance" [10]. Kopsell’s threat model as-
sumes that the attacker has control of only part of the 
Internet and that some small amount of unblockable 
inbound information can enter, perhaps out of band. 
The nodes in Kopsell’s system are volunteer anonymiz-
ing proxies that clients communicate with over in order 
to obtain access to a censorship-resistant publishing 
system. Clients obtain an invitation to the network, in-
cluding the IP addresses of some proxy nodes, through 
a low-bandwidth, unblockable channel. 

Kopsell’s proposal used SSL as the communication 
channel. Unfortunately, SSL does not offer blocking 
resistance when SSL traffic is specifically targeted. Tor 
has suffered blocking by two attacks because of its use 
of SSL. One attack specifically targeted unique 
characteristics of Tor’s SSL handshake and the other 
was a general throttling of all SSL traffic [2][9]. While 
Tor has subsequently increased the steganographic 
strength of its SSL handshake by making it resemble 
Apache’s SSL handshake, this protects against only the 
first attack and not the second.  

 
2.1. Obfuscated Protocols 
An obfuscated protocol, in contrast to a secure protocol, 
provides protection from the attacker only so long as 
the attacker does not know the details of the encoding. 
For instance, BitTorrent clients have implemented three 
obfuscating protocols in order to prevent filtering and 
throttling of the BitTorrent protocol, the most common 
of which is Message Stream Encryption (MSE) [7]. 
Analysis of packet sizes and the direction of packet 
flow have been shown to identify connections obfus-
cated with MSE with 96% accuracy, primarily through 
analysis of the statistical properties of the key exchange 
[4]. 



Obfuscated TCP (ObsTCP) has gone through several 
versions, the last of which used DNS records to trans-
mit the encryption keys [8]. This required the attacker 
to correlate separate communication streams, extracting 
the keys from the DNS packets and then applying them 
to the TCP packets. However, an analogous attack has 
already been demonstrated in the blocking of BitTor-
rent traffic through monitoring of the tracker protocol 
traffic to obtain the ports of the BitTorrent protocol 
connections [10][7]. A similar proposal called tcpcrypt 
is also easily defeated by looking for static strings in the 
handshake [1]. 

Obfuscated-openssh obfuscates the handshake for an 
existing secure protocol by replacing the handshake 
portion of an SSH protocol connection with a minimal 
blocking-resistant encrypted protocol [6]. This hand-
shake is encrypted with a key that is generated by iter-
ated hashes of a seed that is added to the beginning of 
the encrypted part of the handshake. The iteration num-
ber is chosen to be high enough that key generation is 
slow, so the blocking resistance of this technique relies 
on key generation being too expensive to scale to all 
connections simultaneously. However, modern filters 
are capable of statistically sampling packets and proc-
essing them offline, allowing for the obfusation to be 
defeated at least probabilistically. [11].  

3. Design 
 
Unlike an obfuscated or steganographic protocol, Dust 
is secure even against attackers that know the full de-
tails of the protocol. The difficulty is in negotiating a 
secure session key without an unencrypted, filtered 
handshake. Fortunately, Kopsell’s model allows for a 
single out-of-band invitation to be sent prior to the es-
tablishment of the data connection. This affordance is 
the key to creating a protocol which is not merely ob-
fuscated, but rather secure even if the attacker monitors 
all other traffic and is aware of the design of the proto-
col. 
 
The Dust protocol implements such a design in order to 
provide censorship resistance through protocol unob-
servability. Dust uses out-of-band invitations to per-
form the first part of the cryptographic handshake. In 
order to establish protocol unobservability, all packets 
consist entirely of encrypted or random, single-use 
bytes so as to be indistinguishable from each other and 
from random packets. Theoretical attackers that target 
random packets are dealt with by an optional second 
stage of “unrandomization” using a reverse Huffman 
encoder. Table 1 summarizes the various attacks that 
Dust is designed to defend against. 

 
As in Kopsell’s model, a peer must first receive an out-
of-band invitation to join the network. This invitation 
contains the IP address and public key of the receiver. 
The sender can then complete the handshake by sending 
a single in-band intro packet. The handshake is now 
complete and each side now has the public key of the 
other, allowing for a secure session key to be computed. 
The parties can now communicate bidirectionally with 
any number of data packets encrypted with the session 
key that was computed in the handshake. The minimal 
Dust conversation therefore consists of two logical in-
band packets: one intro packet, and one data packet. 
The protocol specification allows for these packets to 
be chained together inside a single UDP or TCP packet. 
The use of a single UDP or TCP packet for communica-
tion of short messages prevents timing attacks when the 
payload is sufficiently small. For larger payloads, Dust 
does not protect against timing attacks based on the 
timing of the application layer protocol. However, Dust 
does not add its own unique timing characteristics in 
the handshake as the handshake consists of only one 
packet and therefore is not vulnerable to timing attacks 
except those directed at the timing added by applica-
tions using Dust as the underlying transport protocol. It 
is the responsibility of the application protocol to con-
trol its timing in such a way that it is difficult to finger-
print. 
 
3.1. Protocol 
In order to accept a connection from a new client, a 
Dust server must first complete a key exchange with 
that client. The Dust server first creates an invite packet 
containing the server's IP, port, and public key, and a 
newly generated ID and shared secret pair. The invite 
must then be communicated to the client out-of-band by 
any means that is effective. The invite is encrypted with 
a password and so is indistinguishable from random 
bytes. It can therefore be safely transmitted, along with 
the password, over an out-of-band channel such as 
email or instant messaging. It will not be susceptible to 
attacks which block email communication containing IP 
addresses because only the password is transmitted un-
encrypted. If the invitation channel is under observation 
by the attacker, and only in the case that the attacker is 
specifically attempting to filter Dust packets, then the 
password should be sent by another channel that, while 
it can still be observed by the attacker, should be uncor-
related with the invitation channel. For instance, the 
password could be delivered in a non-digital form such 
as voice or writing. 

An important thing to note about the out-of-band chan-
nel for distribution of the invite packet is that 



anonymizing proxy networks already require such a 
channel for the purpose of proxy discovery. It is already 
necessary for communicating the proxy IP and port to 
the client without this communication being blocked by 
the attacker. Modifying the proxy discovery protocol to 
use Dust invite packets instead of plain-text IP and port 
pairs is a minimal change and allows for a truly secure 
protocol instead of mere obfuscation. The format for 
Dust invites is also more resistant to filtering than the 
invitations currently in use for anonymizing the proxies. 
The worst case for Dust invites is the one in which both 
the invite and the password are intercepted, they are 
correlated, and the invite is decrypted. The IP of the 
receiver and then by added to a blacklist and subse-
quently blocked. This worst cast scenario is equivalent 
to the current situation for anonymizing proxies which 
use unencrypted invitations. 

In order to complete the handshake, the client uses the 
IP and port information from the invite packet to send 
an intro packet to the server. The first few bytes of the 
intro packet contain the random, single-use ID from the 
invite packet. The rest of the intro packet is encrypted 
with the secret from the invite packet. The payload of 
the intro packet is the public key of the client. 

When the server receives a packet from an unknown IP 
address, it assumes it to be an intro packet and retrieves 
the ID from the beginning of the packet. This is used to 
look up the associated stored secret. The server uses the 
secret to decrypt the packet, retrieves the public key of 
the client, and generates a shared session key. It adds 
the session key to its list of known hosts, associated 
with the IP and port from which the intro packet was 
sent. This completes the second phase of the public key 
exchange. The client and server can now send and re-
ceive encrypted data packets freely. Since Dust packets 
can be chained inside of TCP or UDP packets, the intro 
packet may be followed immediately by a data packet. 
If the message to be communicated is short, then this 
single packet may constitute the entirety of the conver-
sation. 

3.2. Packet Format 
There are three types of Dust packets: invite, intro, and 
data. All three types of packets build upon the basic 
Dust packet format. In a basic Dust packet, the MAC is 
computed using the ciphertext, initialization vector 
(IV), and a key. The type of key used differs depending 
on the type of packet. Using a MAC allows for the con-
tents of the packet to be verified against corruption or 
tampering. The IV is a single-use random value used to 
encrypt the ciphertext and compute the MAC. This en-
sures that the ciphertext and MAC values will be differ-

ent even when sending the same data. Since the IV is 
random and the MAC is computed using the IV, both 
values are effectively random to an observer. The rest 
of the packet, excluding the padding, are encrypted to 
form the ciphertext. The ciphertext includes a time-
stamp, lengths for the data and padding, and the data 
itself. A separate padding length (PL) value is needed 
because several Dust packets may be contained inside a 
single UDP or TCP packet. Finally, a random number 
of random bytes of padding are added in order to ran-
domize the packet length. 

An invite packet contains all of the basic fields such as 
MAC, IV, and padding. The key used in an invite 
packet to encrypt the ciphertext and compute the MAC 
is a derived from a password and random salt value 
using a password-based key derivation function 
(PBKDF). The salt value is prepended to the encrypted 
packet. The use of both salt and a PBKDF makes it 
difficult to decrypt the packet by brute force. This pro-
tects the contents of the invite packet against decryption 
unless the password is known. 

The invite packet includes the information necessary 
for the client to connect to the server and complete the 
handshake. It contains the server’s public key, the IP 
and port where the server can be contacted, a flags byte 
which specifies if the connection to the server should be 
made using UDP or TCP and whether the IP address is 
an IPv4 or IPv6 address, and an ID and secret pair to be 
used in the construction of an intro packet. 

In an intro packet, the ID is the same as the one re-
ceived in the invite packet. This is effectively a single-
use random value as when it was contained in the invite 
packet it was encrypted and it is only seen in plain text 
in the intro packet. The ID is used by the server to link 
the intro packet to the stored single-use random secret. 
This secret is used to encrypt the ciphertext and to 
compute the MAC for the intro packet. Since each ID is 
a single-use value, only one intro packet can be sent for 
each invite packet received by the client. The rest of the 
fields in an intro packet are the same as a general Dust 
packet. The content of an intro packet is the public key 
of the client. 

Once the server has obtained the client’s public key 
from the intro packet, the key exchange is complete and 
a shared session key is computed by both sides for use 
in encrypting future data packets. In a data packet, the 
content is the data to be sent and the key used to en-
crypt the ciphertext and to compute the MAC is the 
shared session key derived from the exchanged public 
key and locally stored private key. 



4. Discussion 
 
Table 1 summarizes the attacks against the protocol and 
the protocol features that protect against those attacks. 
The common DPI attacks are covered as well as com-
mon attacks against general protocols such as corrup-
tion and replay of packets. The main theoretical attack 
that has been raised against Dust so far is that of statis-
tical sampling and filtering of protocols with high en-
tropy. Since Dust cannot be differentiated by normal 
means from other entropy maximizing protocols the 
attack must be against all such protocols. 

To defend against this attack, recent versions of Dust 
include an optional “unrandomization”. The high en-
tropy output of the normal Dust encoder is given to a 
reverse Huffman encoder [12], which uses the fre-
quency table from an existing protocol and “decom-
presses” the Dust packet to match that distribution. 
Through this process a Dust packet can be given an 
arbitrary entropy, thereby defeating high entropy filter-
ing. 

 
Attack Defense 
Static strings All fields encrypted  

or randomized 
Length Randomized padding 
Timing Single packet conversations 
Corruption Encrypted MAC 
Replay Timestamp 
Insertion Encrypted MAC 
Brute force Salt and PBKDF 

High entropy Reverse Huffman Encoding 

                   Table 1. Attacks and defenses 
 

5. Conclusion 
 
Dust allows for secure communication to be established 
without leaking information to the attacker that could 
be used to identify and block the protocol. For attackers 
that specifically seek to block Dust-like protocols, an 
optional second stage of steganographic encoding can 
be used, allowing Dust to resemble existing protocols 
(when an appropriate encoder is available) while main-
taining its core properties of security and lack of infor-
mation flow to the attacker. 

Those wishing to examine or use the Dust protocol for 
academic or practical purposes can find the source code 
for its implementation at http://github.com/blanu/Dust. 

Although the general Dust protocol can use a variety of 
algorithms for its cryptography operations, the refer-
ence Dust implementation uses Skein-256-256 for hash, 
MAC, PRNG, PBKDF, and cipher functions and the 
curve25519 ECDH implementation for generate session 
keys from public and private keys. Further specific de-
tails about the implementation of the protocol can be 
found in the README at 
https://github.com/blanu/Dust/raw/master/README. 
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