

Copyright

by

Brandon Keith Wiley

2016

The Dissertation Committee for Brandon Keith Wiley Certifies that this is the
approved version of the following dissertation:

Circumventing Network Filtering with Polymorphic Protocol
Shapeshifting

Committee:

William Aspray, Supervisor

Kenneth Fleischmann

Byron Wallace

Jacek Gwizdka

Margaret Myers

George Danezis

Circumventing Network Filtering with Polymorphic Protocol
Shapeshifting

by

Brandon Keith Wiley, B.A., B.S., M.A.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin
May 2016

Dedication

I dedicate my dissertation to my parents and my sister.

 v

Acknowledgements

I wish to thank my committee members. A special thanks to William Aspray, my

committee chairman, for encouraging me to choose a topic close to my heart for

my dissertation, and Maggie Myers, the committee member that has stayed with

me from the beginning of the dissertation process when it was just an idea.

 vi

Circumventing Network Filtering with Polymorphic Protocol
Shapeshifting

Brandon Keith Wiley, PhD

The University of Texas at Austin, 2016

Supervisor: William Aspray

As use of the Internet has expanded to become ubiquitous, so has the use of

filtering technology to selectively block access to content. In order to restore access to

blocked content, filtering circumvention technologies have also been developed. This

dissertation addresses the technical methods for developing a circumvention technology

that is both useful and pragmatic. This goal was achieved by using modeling of filters as

the basis for constructing filtering-resistant encodings that provide adaptability to

filtering methods. The result was an engine that can generate encodings customized to

work with different circumvention tools and to circumvent different filters. Through a

value-sensitive design process a circumvention tool was developed that utilizes this

engine to provide access to credible and relevant information for users on networks that

implement filtering. This research has implications for the practical effectiveness of

filtering technologies and the methodologies for the creation of circumvention tools.

 vii

Table of Contents

List of Tables ... xiii	

List of Figures .. xiv	

List of Illustrations .. xvii	

1. Introduction ..1	
1.1 Purpose ..3	
1.2 Research Questions ...6	
1.3 Importance ..6	
1.4 Approaches to Filtering and Circumvention ...8	

1.4.1 Definitions...10	
1.4.2 Censorship-Resistant Publishing and Anonymizing Proxies11	
1.4.3 Obfuscated Protocols ..16	

2. Design of Circumvention Tools Using Dust ..19	
2.1 Introduction ...19	
2.2 Design Reflection Framework ..20	
2.3 Design Concept 1 ..21	

Motivation ..21	
Design Concept ..22	
Embodied Values ...22	
Implications for the Dust Engine ...22	
Design Reflections ...23	

2.4 Design Concept 2 ..24	
Motivation ..24	
Design Concept ..24	
Embodied Values ...24	
Implications for the Dust Engine ...25	
Design Reflections ...25	

2.5 Design Concept 3 ..26	

 viii

Motivation ..26	
Design Concept ..26	
Embodied Values ...27	
Implications for the Dust Engine ...27	
Design Reflections ...28	

2.6 Design Concept 4 ..28	
Motivation ..28	
Design Concept ..29	
Embodied Values ...29	
Implications for the Dust Engine ...29	
Design Reflections ...29	

2.7 Design Concept 5 ..30	
Motivation ..30	
Design Concept ..31	
Embodied Values ...32	
Implications for the Dust Engine ...33	
Design Reflections ...35	

2.8 Design Concept 6 ..35	
Motivation ..35	
Design Concept ..36	
Embodied Values ...37	
Implications for the Dust Engine ...38	
Design Reflections ...39	

2.9 Conclusion ..39	

3. Model Building ..42	
3.1 Introduction ...42	

3.1.1 Goals ...43	
3.2 Preliminary Research ..46	

3.2.1 Hardware Study ..46	
3.2.2 Field Study ..49	

 ix

Duration ..52	
Lengths – Outgoing ..53	
Lengths – Incoming ..55	
Entropy – Outgoing ..57	
Entropy – Incoming ..59	
Flow – Outgoing ...61	
Flow – Incoming ...63	
Content – Outgoing ...65	
Content – Incoming ..67	
Byte Sequence Matching ..68	
HTTP - Incoming ..69	
HTTP – Outgoing ...69	
HTTPS – Incoming ...69	
HTTPS - Outgoing ..70	
HTTP – Incoming ...72	
HTTP - Outgoing ..72	
HTTPS – Incoming ...73	
HTTPS - Outgoing ..73	
Adversary Models ...75	
Adversary Model – Iteration 1 ..76	
Accuracy of Duration Classifier ...77	
Accuracy of Content Classifier ...78	
Accuracy of Entropy Classifier ...80	
Accuracy of Flow Classifier ...81	
Accuracy of Length Classifier ..82	
Total Accuracy of Classifiers for Iteration 183	
Adversary Models - Iteration 2 ...83	

3.3 Adversaries ...95	
3.4 Conclusion ..96	

 x

4 Design of the Engine ...98	
4.1 Introduction ...98	

4.1.1 Use Case ..99	
4.1.2 Packet Filtering Techniques ..99	
4.1.3 How Dust Circumvents Filters ..100	

4.2 High-Level Protocol Overview ...101	
Application Layer ..102	
Encryption Layer ...102	
Shaping Layer ..103	
4.2.1 Application Layer ...104	
4.2.2 Encryption Layer ..105	

The Key Exchange ..105	
Sending Messages ...106	
Randomness ..107	
Wire Protocol ..107	

4.2.3 Shaping Layer ...107	
Shaping Features ...108	

4.3 Protocol Specifications ...110	
4.3.1 Application Layer Protocol Specification110	

Overview ...110	
Protocol ...110	
Starting a new session ...110	
Continuing an existing session..111	
Extending a session ...111	
Closing a session ...111	
Sending data ..112	
Errors ...112	

4.3.2 Encryption Layer Protocol ..112	
Introduction ...112	
Handshake Protocol ..112	

 xi

The ntor Protocol, Step by Step ..113	

When 𝑩 is initialized as a server: ...113	

When 𝑨 is initialized as a client: ...113	

When 𝑨 receives the message (params, pid) = ((“new session”, ntor),
𝑩): ..113	

When 𝑩 receives the message msg = (ntor, 𝑩, X):114	

When 𝑨 receives the message 𝒎𝒔𝒈′ ← (𝒏𝒕𝒐𝒓,𝒀, 𝒕𝑩) for session
identifier 𝜳𝒂: ...115	

Problems with ntor ..117	
Dust Handshake ..119	
Initializing a server ...119	
Initializing a client ..119	
Creating a new session ..119	
When the server receives a client request for a new session120	
When the client receives a server response for a new session ..120	
Creating a shared key ..121	
Creating a confirmation code ..122	
Creating a server identifier ..122	
Creating server identifier flags ..123	
Wire Protocol ..123	
Message Protocol ..123	
Message Protocol Step-by-step ...124	
Sending a message with data ..124	
Sending a message without data ...125	
Sending the header ..125	
Generate flags ...126	
Generate a verification code for the data126	
Wire Protocol ..126	

4.4 Conclusion ..127	

 xii

5. Evaluation ..128	
5.1 Evaluation Methodology ...128	
5.2 Results ...131	

Simulated Adversaries ..144	
5.3 Conclusion ..147	

6. Conclusion ...149	
6.1 Summary of Results ..149	
6.2 Limitations ..152	
6.3 Implications ...155	
6.4 Future Work ..163	

Appendix A – Field Study Data ...168	

Appendix B – Full Size Bytes Sequence Images ...169	

Appendix C – Tables of Evaluation Results ..170	

Appendix D – Source Code for Software ..171	

Appendix E – Hardware Study Testing Tools ...172	
Replay ...172	

Example Mask File ..173	
Shaper ...174	
Additional Utilities..175	

References ..176	

Vita 180	

 xiii

List of Tables

Table 1: 	 Comparison of RMSE sores for duration fitting tests84	

 xiv

List of Figures

Figure 1: Duration of HTTP connections ..52	

Figure 2: Duration of HTTPS connections ..52	

Figure 3: Lengths of outgoing HTTP packets ..54	

Figure 4: Lengths of outgoing HTTPS packets ...54	

Figure 5: Lengths of incoming HTTP packets ...55	

Figure 6: Lengths of incoming HTTPS packets ..55	

Figure 7: Entropy of outgoing HTTP packets ..57	

Figure 8: Entropy of outgoing HTTPS packets ...57	

Figure 9: Entropy of incoming HTTP packets ...59	

Figure 10: Entropy of incoming HTTPS packets ..59	

Figure 12: Flow of outgoing HTTPS packets ..61	

Figure 13: Flow of incoming HTTP packets ...63	

Figure 14: Flow of incoming HTTPS packets ...63	

Figure 15: Content of outgoing HTTP packets ..65	

Figure 16: Content of outgoing HTTPS packets..65	

Figure 17: Content of incoming HTTP packets ...67	

Figure 18: Content of incoming HTTPS packets ...67	

Figure 19: Accuracy of duration classifier for test adversary iteration 177	

Figure 20: Accuracy of incoming content classifier for first iteration of test adversary

...78	

Figure 21: Accuracy of outgoing content classifier for first iteration of test adversary

...79	

 xv

Figure 22: Accuracy of incoming entropy classifier for first iteration of test adversary

...80	

Figure 22: Accuracy of incoming entropy classifier for first iteration of test adversary

...80	

Figure 23: Accuracy of incoming flow classifier for test adversary iteration 181	

Figure 24: Accuracy of outgoing flow classifier for test adversary iteration 181	

Figure 25: Accuracy of incoming length classifier for test adversary iteration 1 ..82	

Figure 25: Accuracy of incoming length classifier for test adversary iteration 1 ..82	

Figure 26: Total accuracy of classifiers for test adversary iteration 183	

Figure 27: Accuracy of duration classifier for test adversary iteration 185	

Figure 28: Accuracy of duration classifier for test adversary iteration 285	

Figure 29: Packet length distribution of incoming packets86	

Figure 30: Packet length distribution of outgoing packets87	

Figure 31: Distribution of byte values in the content of incoming packets88	

Figure 32: Distribution of byte values in the content of outgoing packets88	

Figure 33: Comparison of models of incoming entropy for HTTP and HTTPS ...89	

Figure 34: Comparison of models of outgoing entropy for HTTP and HTTPS90	

Figure 35: Comparison of results of incoming byte sequence matching91	

Figure 36: Comparison of results of outgoing byte sequence matching91	

Figure 37: HTTP matching scores for combined entropy and byte sequences92	

Figure 38: HTTPS matching scores for combined entropy and byte sequences ...93	

Figure 39: Total accuracy for test adversary iteration 2 ..94	

Figure 40: RMSE of predictive model for incoming content131	

Figure 41: RMSE of predictive model for outgoing content132	

Figure 42: RMSE of predictive model for incoming entropy133	

 xvi

Figure 43: RMSE of predictive model for outgoing entropy134	

Figure 44: RMSE of predictive model for incoming packet length135	

Figure 45: RMSE of predictive model for outgoing packet length136	

Figure 46: RMSE of predictive model for incoming packet flow137	

Figure 47: RMSE of predictive model for outgoing packet flow138	

Figure 48: Change in error per feature between XX/YY and XY/YX trials139	

Figure 49: Change in error per protocol between XX/YY and XY/YX trials140	

Figure 50: Average error per feature ...141	

Figure 51: Average error per protocol ...142	

Figure 52: Change in error per feature between original protocol and Dust emulation

...143	

Figure 53: Change in error per feature between original protocol and Dust emulation

...144	

 xvii

List of Illustrations

Illustration 1: Positional probability of byte values in incoming HTTP packets ...69	

Illustration 2: Positional probability of byte values in outgoing HTTP packets69	

Illustration 3: Positional probability of byte values in incoming HTTPS packets 69	

Illustration 4: Positional probability of byte values in outgoing HTTPS packets .70	

Illustration 5: Close up of positional probability in incoming HTTP packets72	

Illustration 6: Close up of positional probability in outgoing HTTP packets72	

Illustration 7: Close up of positional probability in incoming HTTPS packets73	

Illustration 8: Close up of positional probability in outgoing HTTPS packets73	

 1

1. Introduction

Since the creation of the Internet, a tension has existed between the desire of users

to access credible and relevant information and the policies of network administrators

that are created with the aim of regulating content. As new Internet-based communication

technologies are developed, they are used to further the goals of each side. A cat and

mouse game has followed in which new a filtering technology is developed, then a new

circumvention technology is created to bypass the filtering. As network speed and

computing power have increased, ever more sophisticated technologies have been used

for both filtering and circumvention.

This back and forth has provided fertile ground for network security researchers,

with the research agendas following the trends in the deployment of filtering and

circumvention methods. In the first wave of research, censorship-resistant publication

systems were developed in response to attacks on websites hosting specific content that

the adversary wanted removed [4]. In the second wave, filtering moved to blocking

access to the sites holding the content rather than removing the content itself, leading to

approaches that are used to classify and block network connections, such as shallow

packet inspection. As a response, circumvention technology was developed that hid the

aspects of network communication that were used to filter network connections to

blocked sites [5]. In the third wave, now underway, techniques such as Deep Packet

Inspection (DPI) are being used to classify and block network connections based on what

protocol is being used, rather than what site is being accessed. This approach has led to

the current wave of circumvention research, which is concerned with developing

 2

obfuscating protocols that the DPI technology cannot classify correctly [6]. This

technology is referred to in the literature as network protocol obfuscation or more

generally as unobservable communication.

Unobservable communication is a sociotechnical problem that requires a precise

and pragmatic definition of the observer. Research in this field takes distinctly different

directions, depending on whether the proposed observer is chosen based on theoretical or

practical concerns. One approach attempts to define the limits of what can be made

unobservable given an observer with very strong properties taken from the literature [18],

while the other approach attempts to make tools that are both usable and effective [9].

Each of these approaches can be found within the body of Computer Science literature

where most work on unobservable communication resides. The research that embraces

the theoretical approach has well-defined threat models together with strong results for

those models; but when the threat models do not match the reality of filtering conditions,

the results lack practical relevance for the developers and users of circumvention tools.

The research that takes the practical approach makes relevance to the needs of users the

primary goal. However, when the threat models are not well-defined, the tools can fail to

be effective. When the tools are used against filters that provide a different set of threats,

they are unlikely to succeed. The research described here synthesizes aspects of both the

practical and theoretical approaches by using well-defined threat models that are also

practical. The threat models were based on observations of filtering hardware and

analysis of filtered networks. This approach is both a synthesis and an advancement of

the theoretical and practical approaches. It uses a threat modeling approach found in the

theoretical research, but also builds realistic threat models that are useful in the problems

studied by the practical approach.

 3

The field of Information Studies is concerned with the sociotechnical triangle of

interactions between humans, information, and technology. When looking at the problem

of unobservable communication from the perspective of Information Studies, the human

component is of critical importance in differentiating this dissertation research from

related research in Computer Science. A focus of this dissertation is therefore how this

research will benefit people. The circumvention technology developed through this

research has not been treated as politically and socially neutral, but as a value-laden

construction that encodes the values of the situation and purpose for which it is being

constructed. Rather than taking a general-purpose approach to unblock all filtered

Internet traffic, the circumvention techniques developed here has been created with the

aim of enabling a specialized use case for a specific user community. The lasting value of

this research is the generalizable method of creating specialized tools for communities.

1.1 PURPOSE

In the modern Internet, filtering is prevalent and is used for a variety of reasons

from blocking of malware to political oppression. While in the past Internet traffic was

filtered based on IP addresses visited or specific content viewed, currently the dominant

form of filtering is protocol classification. Existential and statistical properties of the

traffic are analyzed to determine which protocol is being used. Based on the protocol, the

traffic is classified into one of a fixed set of categories. The categories are provided in a

high-level interface to network administrators who can, with the click of a button, block

all traffic within a category. This approach blocks all network connections using a

specific protocol, regardless of the content being accessed. Accurate filtering relies on the

ability of the filtering hardware to classify the traffic into protocols by observing

properties of the filtered traffic.

 4

In order to use a value-sensitive approach for designing a circumvention method,

a set of values must be chosen. These values have been selected to inform questions

related to topics that are of interest to Information Studies. The topics chosen to inspire

the value set are the following:

• Information access

• Information credibility

• User relevance

Based on these topics of interest, the core value chosen for the design is providing

access to credible and relevant information. There are a multitude of uses for network

filtering and some of them, such as malware blocking and intrusion detection, do not

conflict with this value; so circumvention of these uses is not necessary for this design.

However, filtering can also be used to block access to relevant and credible information.

For example, the most extensively filtered content on the Internet is news. On many

networks where information policy is set at the national level, access to credible news

sources is blocked. This censorship of news media can extend beyond major news sites to

individual blogs and even to individual news stories and blog posts. The control of access

to relevant and credible information can extend beyond the targeted sites to any protocols

that can be used to bypass the blockade on news. Virtual Private Network (VPN)

software that is used by business travelers to securely connect to their home networks is

now blocked on some networks that block access to news. Since encrypted protocols are

sometimes used to circumvent filtering, encrypted protocols are also a target for blocking.

Even protocols such as HTTPS, which are critical to providing security on the web, are

sometimes blocked. Extreme efforts to filter news can therefore, through collateral

damage, be at odds with supporting security and privacy - the same benefits that network

 5

filtering devices could theoretically provide if used for blocking malware and other

attacks.

The purpose of the proposed dissertation project is to support the core value of

allowing access to credible and relevant information by designing and implementing a

new filtering circumvention technology that renders protocol classification ineffective as

a means of filtering.

This research has the following goals:

• Advance the literature of unobservable communication - Show that the

approach used for building circumvention technology is a general solution to the

problem of filtering based on protocol classification

• Practical - Demonstrate that the circumvention technology is effective against

sociotechnically realistic scenarios

• Useful - Explicate the ramifications of this technology on the specific use case of

providing access to credible and relevant information

 6

1.2 RESEARCH QUESTIONS

Modeling Filters

• What properties of Internet traffic are important for filtering as it occurs in

practice today?

• Do the particular filtering methods that have been implemented in deployed

hardware have a set of characteristics that provide an opening for a practice of

circumvention?

• How can statistical models be used to capture the relevant details of filters?

• How well do the statistical models of protocols fit the observed data?

Design of Circumvention Tools

• How can a circumvention tool be built using models of filters?

• How effective is the circumvention tool against the modeled filters?

• What are the characteristics of traffic carrying credible and relevant information

that allow it to be classified and filtered?

• How effective can a circumvention tool be in restoring access to this information

when evaluated against a simulated filter?

• How efficient can a circumvention tool be in restoring access to this information

in terms of bandwidth overhead?

1.3 IMPORTANCE

As new filtering technologies have been developed, new methods of

circumvention have been introduced. Effective circumvention tools then necessitate new

filtering technologies, and so on, in a cycle. Current approaches to circumventing modern

filtering techniques have followed a similar approach to circumventing previous filtering

techniques. New protocols are developed that circumvent current filters, but they last

 7

only a single technological generation before new filtering technology is developed to

defeat the circumvention tools.

The research proposed here breaks out of this cycle by taking a sociotechnical and

information-theoretic approach to analyzing the problem of filtering. The general-purpose

approach to circumventing filtering based on protocol classification was adapted into a

pragmatic instantiation that is effective at circumventing current filters. If filtering

techniques or policies change, the process of instantiating a specific circumvention tool

for the current conditions can be repeated. This approach turns what was previously a

technology development problem into an information problem. This shift breaks the

technological chess game between filtering and circumvention and moves into a new

direction where the competition is not between software or hardware but between the

fidelity of models. Specifically, the competition was between whether the filtering

hardware or the circumvention tool had a better computational model in terms of most

accurately reflecting the sociotechnical landscape of Internet use. The goal of the filter

was to define in precise computational terms the observable difference between types of

Internet use that the network operator desires to allow and those the operator desires to

block. The goal of the circumvention tool was to make the line between these two

categories difficult to determine with precision. In information-theoretic terms, the goal is

to make these two categories practically indistinguishable for the given observer. This

approach of combining a sociotechnical perspective with an information-theoretic

analysis of filtering and circumvention is currently not employed in the field of

unobservable communication. By applying an Information Studies perspective to a field

that is usually only studied from a purely technical point of view, new results are possible

that enable unobservable communication against specific filters to be both effective and

efficient.

 8

This research is important not only because it advances the literature of

Information Studies and of unobservable communication, but also because it provides a

practical and useful means to advance the core value of the design. As the Internet has

become an increasingly important source for satisfying everyday information needs for

people around the world, new threats to information access have arisen. Unlike physical

media, access to online information can be revoked instantly on a national scale. Through

an appropriate circumvention tool access to credible and relevant information can be

restored effectively and efficiently for a user community affected by filtering.

1.4 APPROACHES TO FILTERING AND CIRCUMVENTION

This introduction will explore some of the history of filtering and circumvention.

The literature review is kept intentionally narrow, as the purpose is to establish the

motivation for engaging in the present research, which is the development of

polymorphic protocol shapeshifting systems as a means to circumvent network filters.

Once this course of research has been established and the ideas put forth in this

dissertation are accepted by the research community as a promising approach, there is

additional literature that could be explored to build improved systems. Literature from

steganography, website fingerprinting, and machine learning could all provide potential

future improvements upon the system presented here. Additionally, research on protocol

obfuscation continues to evolve as new systems are created. This literature review does

not attempt to provide a comprehensive overview of every obfuscation method, but rather

to focus on the approaches that precede and motivate the present work.

The evolution of filtering on the Internet can be characterized as a cycle of

increasingly sophisticated filtering techniques inspiring new circumvention techniques,

leading to the development of more advanced filtering techniques. Shallow packet

 9

inspection refers to an approach where only packet headers are examined. Shallow packet

inspection filtering techniques that filter based on the IP addresses in packet headers led

to the development of anonymizing proxy networks that hide the true destination IP

address by first routing through proxies [5]. Current filtering technology is now

employing Deep Packet Inspection (DPI), in which characteristics besides the headers are

examined, such as the contents. DPI techniques that can filter out specific Internet

protocols. This has resulted in filtering-resistant services such as anonymizing proxies

being specifically targeted to be blocked or throttled [13]. Traditional approaches to

filtering resistance are no longer effective unless they also incorporate blocking

resistance so that users can communicate with the circumvention services [6].

Traditionally, Internet traffic has been filtered using shallow packet inspection,

where only packet headers are examined. Since packet headers must be examined

anyway in order to route the packets, this form of filtering has minimal impact on the

scalability of the filtering process, allowing for its widespread use. The primary means of

categorizing packets for filtering with shallow packet inspection is to compare the source

and destination IP addresses and ports to a known list. This can be either a "blacklist" of

known IPs and ports that should be blocked, with the default being passing the traffic

through, or it can be a "whitelist" of traffic that should be passed through with the default

being to block. A blacklist is more commonly used in practice. The blacklists must be

updated as new target IPs and ports are discovered. Port blacklists are circumvented using

port randomization. In order to circumvent IP blacklists, anonymizing proxies are used

that hide the true IPs by routing through a network of proxies that have IPs that are not on

the blacklist. As the IPs of proxies are discovered by the adversary, they are added to the

blacklist, so a fresh set of proxy IPs must be made available and communicated to users

 10

periodically. This is known as the proxy discovery problem and is an issue faced by all

anonymizing proxy systems [7].

More recently, DPI techniques have been deployed that can successfully block or

throttle most existing filtering circumvention solutions [26]. DPI filters packets by

examining the packet payload and, while this is more expensive, it can achieve suitable

scalability through random sampling of packets [3] or through only looking at the first

packet or first few packets in a traffic flow. The primary test that DPI filters apply to

packets is static string matching, although other fingerprints such as timing, packet

length, and entropy are also possible. DPI can filter not only based on the content

keywords, but also on the specific protocol, as determined by protocol fingerprinting

techniques. Even encrypted protocols such as SSL/TLS can be fingerprinted. While

encryption protects the contents from static string matching, encrypted protocols often

include their own unencrypted handshakes preceding the start of encryption. Static string

matching can then be used on the handshakes instead. For instance, SSL/TLS uses an

unencrypted handshake for cipher negotiation and key exchange and so is easily

fingerprinted and filtered. Current filtering hardware exploits this fact and can do

SSL/TLS blocking using byte sequence matching. This capability was observed in the

hardware study discussed in section 3.2.1 and Appendix E. Additionally, characteristics

of the packets such as packet lengths and timing are not altered by encryption and can

still be used for filtering.

1.4.1 Definitions

Filtering resistance is often discussed in connection with other related concepts

such as anonymity, unlinkability, and unobservability. These terms are sometimes used

interchangeably and sometimes given specific technical definitions. Pfitzmann proposed

 11

a standardized terminology that defines and relates these terms [25]. Unlinkability is

defined as the indistinguishability of two objects within an anonymity set. Anonymity is

defined as unlinkability between a given object and a known object of interest.

Unobservability is defined as unlinkability of a given object and a randomly chosen

object.

Defining properties such as anonymity and unobservability in terms of

unlinkability opens the way for an information-theoretic approach. Hevia offers such an

approach by defining levels of anonymity in terms of what information is leaked from the

system to the adversary [16]. Unlinkability requires the least protection, hiding only the

message content. Unobservability requires that no information is leaked whatsoever. Of

particular interest is that an anonymous system of any type can be taken up to the next

level of anonymity by adding one of two system design primitives: encryption and cover

traffic.

1.4.2 Censorship-Resistant Publishing and Anonymizing Proxies

Circumvention technology has gone through multiple waves of development in

response to changes in filtering technology. The first wave approach to achieving

filtering resistance is through what is known in the literature as "censorship-resistant

publishing". This work consisted of publishing services such as Publius [31], Tangler

[30], and Mnemosyne [14]. A practical issue with the use of censorship-resistant

publishing systems is that even a system that provides maximum protection for stored

files must still be accessible in order for those files to be retrieved. If communication to

the document servers is blocked, then the system cannot be used and is an ineffective

means of circumvention.

 12

Practical circumvention therefore requires protection for communications as well

as documents. Protection of communications is the focus of the second wave of

circumvention tools, which are known in the literature as anonymizing networks. The

most well-researched anonymizing network is Tor [5]. The original goal of anonymizing

networks was to provide anonymity for the communicating parties, but they have also

found a use in circumventing filtering. Serjantov [28] proposed combining censorship-

resistant publishing with anonymizing networks as a solution to attacks that block access

to publishing servers. This solution compartmentalizes the problem by using the

publishing system to protect documents and relying on the proxy system to provide

resistance against communication with the publishing system being blocked. However,

anonymizing proxies do not offer perfect resistance against all blocking attacks. While a

network of proxy nodes can provide protection against destination IP blacklists, they are

still vulnerable to various forms of DPI protocol fingerprinting.

Protection against protocol fingerprinting characterizes the third wave of

circumvention research. This topic is dealt with by Kopsell, who proposes a method to

extend existing anonymous publishing systems to bypass blocking, a property referred to

as blocking resistance [21]. In light of the work of Serjantov and Kopsell it is evident that

if anonymous proxies are a necessary component of censorship-resistant publishing and

blocking resistance is a necessary property of anonymous proxies, then blocking

resistance is necessary for censorship-resistant publishing.

Kopsel's threat model contains the assumptions that the adversary has control of

only part of the Internet (the filtered zone), that some small amount of unblockable

inbound information can enter the filtered zone (perhaps out of band), and that the

blocking-resistant system design is known to the adversary.

 13

Kopsell's solution is divided into two parts: access to the blocking-resistant

system, and distributing information about the blocking-resistant system, which is

essentially the proxy discovery problem again. The nodes in Kopsell's system are

volunteer anonymizing proxies that clients communicate with over a steganographic

protocol in order to obtain access to a censorship-resistant publishing system. Clients

obtain an invitation to the network, including the IP addresses of some proxy nodes,

through a low-bandwidth, unblockable channel into the filtered zone. Kopsell suggested

using email to distribute the invitations. A number of ideas are proposed for the

steganographic data channel such as SSL and SMTP protocols.

Though Kopsell's model for blocking resistance addresses some of the real issues

facing censorship-resistant publication systems and anonymizing networks, it relies on

the steganographic data and unblockable invitation channels to have certain properties

that may not be met in actual implementations. The essential purpose of the

steganographic channel is to provide resistance to protocol fingerprinting. However, even

if the information cannot be recovered from the steganographic encoding, if it is

discovered that the channel contains steganographically encoded information, then that

channel can be blocked on this basis. In other words, the encoding must be undetectable

in practice in order to be useful. While the goal of steganography is in fact to be in theory

undetectable, Kopsell's approach essentially relies on the existence of adequate

steganography in order to function and that the steganographic channel is not itself

blocked for other reasons. The constraint on the invitation channel is that it is completely

unblockable, as no particular protection is given to information distributed on this

channel.

Analysis of historical attacks has shown that SSL is not a suitable encoding

against modern adversaries inasmuch as the protocol is easily fingerprinted and blocked

 14

[27][7]. Additionally, email is not a suitable channel for sending invitations because it is

not blocking-resistant. Recent attacks have blocked the communication of IP addresses of

proxies through email and instant messaging. Given these attacks on email and SSL, a

potential research question for this approach is to determine what sort of channels are

suitable for invitations and data to be communicated without being vulnerable to

blocking.

Information theory provides a conceptual framework that offers an answer not

just to the question of blocking resistance but also of its relationship to censorship

resistance in general. Censorship-resistant publishing systems provide document

unlinkability. Hevia connects the definition of unlinkability to information theory by

defining it as the indistinguishability of information transmitted on the channels between

the system and the adversary [17]. Boesgaard connects document unlinkability to

information theory as the achievement of “perfect” secrecy, a technical term meaning that

no information is revealed about the document through observation [2]. Censorship

resistance can therefore be thought of as a form of perfect secrecy achieved by means of

indistinguishability. Pfitzmann defines unobservability as a form of unlinkability [25] and

Perng defines censorship resistance as unobservability [24]. In other words, censorship

resistance is unobservability through unlinkability of the object of interest and a random

object, which is equivalent in information theory to perfect secrecy. Viewed in this

context, a censorship-resistant publishing system would be one in which the adversary

cannot obtain sufficient information through observation of the system to distinguish

which documents are accessed by users. Thus, censorship-resistant publishing is

document unobservability. Anonymous proxies add a similar property, unobservability of

the publishing system. The final step, which Kopsell calls blocking resistance, is

unobservability of the anonymous proxy, which requires unobservability of the protocol

 15

by which clients communicate with the proxies. When these properties are combined,

end-to-end unobservability is created from the client to the document.

The ideal communication protocol is therefore one that is unobservable, meaning

that a packet or sequence of packets is indistinguishable from a randomly selected packet

or random sequence of packets drawn from the set of hypothetical “normal” Internet

traffic. This is not necessarily a steganographic encoding. A steganographic encoding is

unobservable only so long as the message encoding is not detectable, regardless of

whether the message can actually be decoded. Additionally, steganographic channels can

be blocked if the cover channel is blocked. In the case of the rate limiting of Tor, SSL

was being used as both encryption and as steganography since there is a large amount of

non-Tor SSL traffic on the Internet. The Tor network has been successfully attacked in

the past because of its use of SSL. One attack targeted unique characteristics of Tor's SSL

handshake specifically and another involved a throttling of all SSL traffic [27][7]. While

Tor has subsequently increased the steganographic strength of its SSL handshake by

making it resemble Apache's SSL handshake, this does not prevent against an attack that

blocks or throttles all SSL traffic.

Steganography is not the only option for unobservable protocols. Encryption is

also a means of making messages indistinguishable. Specifically, one of the desired

theoretic properties of encryption is that ciphertexts should be indistinguishable from

each other. Although protocols such as SSL are encrypted, these protocols often have an

unencrypted handshake. This unencrypted portion of the communication is primarily

what is used to fingerprint and block the protocol. Additionally these protocols may leak

other information to the adversary through other sources, such as packet lengths and

timing. The set of indistinguishable objects is also limited, even in the best case. While

ciphertexts are ideally indistinguishable from each other, and therefore theoretically so

 16

are encrypted protocols, they are distinguishable from unencrypted protocols. So an

entropy measurement attack can be used to distinguish and block all encrypted protocols.

A properly designed encrypted protocol with an encrypted handshake and unpredictable

packet lengths and timings would be resistant to identification through fingerprinting,

which the exception of entropy attacks targeting all encrypted protocols. In the normal

use case for SSL, an entirely encrypted connection would not be possible as the

communicating peers need to perform a public key exchange in order to determine the

session key used to encrypt the conversation. However, unlike a normal SSL connection,

Kopsell's model allows for a single out-of-band invitation to be sent prior to the

establishment of the data connection. This affordance is the key to creating a secure

protocol that is blocking-resistant even if the adversary monitors all other traffic and is

aware of the design of the protocol.

1.4.3 Obfuscated Protocols

The goal of an obfuscated protocol is to provide protection from the adversary

only so long as the adversary does not know the details of the obfuscation scheme. This is

in contrast to a secure protocol that maintains protection even if the adversary knows the

details of the protocol. What obfuscated protocols achieve is that new rules must be

written to filter them and so protection is achieved until that occurs. Several obfuscated

protocols have been developed with various goals, including blocking resistance. For

instance, BitTorrent clients have implemented three encryption protocols in order to

prevent filtering and throttling of the BitTorrent protocol. The most common of these in

current usage is Message Stream Encryption (MSE) [32]. Although MSE has an

encrypted handshake that facilitates the DH key exchange, analysis of packet sizes and

the direction of packet flow have been shown to identify connections obfuscated with

 17

MSE with 96% accuracy, primarily through analysis of the statistical properties of the

key exchange [17]. As is evident from this and the following examples, the key exchange

turns out to be the weak point in obfuscated protocols. As a typical key exchange is not

encrypted, due to the fact that the encryption keys are by definition not available until the

end of the exchange, the network traffic generated by the key exchange may be more

vulnerable to protocol identification. Careful design with a specific focus on resisting

protocol identification is necessary. This issue is explored further in section 4.3.2,

“Encryption Layer Protocol.”

Obfuscated TCP (ObsTCP) has gone through several versions, each using a

different means to communicate the keys, including TCP options, HTTP headers, and

DNS records [33]. The strongest of these is DNS records inasmuch as TCP options and

HTTP headers are readily blocked using static string matching, while DNS records are

transmitted on a separate connection from the one carrying the data, requiring correlation

between separate connections. However, an adversary has already demonstrated this sort

of general correlation ability in the blocking of BitTorrent traffic by monitoring tracker

protocol traffic to obtain the ports of the BitTorrent protocol connections and then

subsequently interfering with the (sometimes MSE-encrypted) BitTorrent protocol

connections [15][29]. A second connection from the same IP is not ideal as an out-of-

band channel for the purpose of blocking resistance. Another protocol similar to ObsTCP

called tcpcrypt does not have blocking resistance as a design goal and subsequently

provides less protection than ObsTCP with a DNS key exchange as it uses static strings

in the handshake [1].

An attempt has been made to address the handshake fingerprinting problem in the

form of the obfuscated-openssh patch to OpenSSH that replaces the SSH handshake

portion of an SSH protocol connection with a minimal blocking-resistant encrypted

 18

protocol [22]. An encrypted handshake for an existing encrypted protocol has the

advantage that it involves the minimal amount of change necessary to achieve blocking

resistance so long as the protocol already has resistance to other attacks such as packet

size and timing. When circumventing filters that only look at the first packet or first few

packets before classifying traffic, replacing the handshake may be sufficient protection

regardless of what features the adversary is examining. This obfuscated-openssh

handshake is designed to be resistant to fingerprinting by matching static strings and

packet sizes. However, it is an obfuscated protocol only and not secure because its

security relies on an assumption about the scalability of filtering technology. The

handshake is encrypted with a key that is generated from a seed that is added to the

beginning of the encrypted part of the handshake. The key is then generated by iterated

hashes of the seed. The iteration number is chosen to be high enough that key generation

is slow. The blocking resistance of this technique relies on key generation being too

expensive to scale to all connections simultaneously. However, modern filters are capable

of statistically sampling packets and processing them offline [3]. This approach is

probabilistic in its ability to block connections, but is highly scalable. Additionally, the

introduction of slow key generation may allow for less expensive timing attacks.

Between the beginning of this dissertation project and its conclusion, there have

been new developments in obfuscated protocols. Much of this research has been

motivated by the work of the Tor project to develop a Pluggable Transports framework

to allow obfuscated protocol to be used as a wrapper around Tor traffic. The motivation is

to facilitate academic researchers and practitioners in the field to develop a diverse

variety of methods for obfuscated that can all be used to allow Tor to work on networks

that block Tor traffic through protocol classification and filtering. The implications of

Pluggable Transports for Dust will be explored in section 2.7, “Design Concept 5.”

 19

2. Design of Circumvention Tools Using Dust

The Dust engine is a general-purpose method for circumventing filters. The

engine by itself is only useful to filtering circumvention researchers. To be used in an

applied setting it must be incorporated into circumvention tools. In order to take Dust out

of the laboratory and get it into the hands of users, a value sensitive design approach was

used to build a customized circumvention technology for a specific community of users.

2.1 INTRODUCTION

Value sensitive design (VSD) is a theory and method for accounting for human

values in a principled and systematic way during the design process [11]. It provides a

means for making ethical considerations a part of the process of tool creation. This

approach offers an alternative to the viewpoint of treating technology as politically and

social neutral. VSD is a generalized approach to design that can be used to bring human

values into the design of any technology. The VSD approach has been previously used in

the analysis of design decisions in tool development for purposes of security and privacy.

For instance, the Security Cards project [12] used a VSD approach together with

heuristics from security threat analysis to foster a security mindset around the design and

development of new technologies. The model for applying VSD to the creation of

filtering circumvention tools based around the use of the Dust engine was a previous

study done as a joint research project between the Information school at the University of

Washington and the Computer Science department at Princeton. In this study VSD was

used to improve the cookie management interface in the Mozilla Firefox web browser

[10]. This is a relevant project in that it was a technological intervention designed to

improve the security and privacy of Internet users. A similar approach was used here,

customized to the needs of circumvention technology design.

 20

2.2 DESIGN REFLECTION FRAMEWORK

Following the model for the Mozilla Firefox cookie management improvement

project [10], the design process incorporated the following phases:

• Describe criteria for access to credible and relevant information

• In light of those criteria, summarize how filtered networks fall short in delivering

such access

• Identify goals for circumvention of filtering to improve access to credible and

relevant information

• Using each one of these goals, initiate an iterative design process:

o Design new technical mechanisms

o Implement new technical mechanisms

o Formative evaluation

o Repeat until the goals are met

• Reflect on the results of the design process and the strengths and weaknesses of

using VSD instead of a conventional design process

Throughout the iterative design process, three types of investigations take place:

conceptual, technical, and empirical. The conceptual investigations provide

philosophically informed analyses of the issues central to the system under development.

The technical investigations consider how existing technical designs provide affordances

for values and how identification of specific values influences the design of new

mechanisms that better support those values. The empirical investigations evaluate the

system under design to provide a pragmatic grounding.

A key differentiator between the present research and the cookie management

study is in how formative evaluation was conducted. Unlike the cookie management

 21

project, the purpose of building circumvention tools that use the Dust engine is not to

evaluate the tools directly, but to build a realistic use case for evaluating the Dust engine

and the filtering models. The fundamental difference is that the cookie management study

was evaluating the usability of an interface, while the present research is evaluating the

effectiveness of a circumvention tool in realistic scenarios. Therefore the formative

evaluation was to use as the metric of evaluation the efficiency and effectiveness metrics

developed in Section 2.2.2 on evaluating the engine. The third stage of research on

building circumvention tools built on the previous evaluation involves developing a

working circumvention tool with properties derived by the VSD process and then

evaluating efficiency and effectiveness in this context. The result of this work was an

engine and set of models that describe a realistic filtering and circumvention scenario, as

well as a functioning tool ready to be deployed to users. Before building a technology and

evaluating it through technical metrics, several iterations of design reflection were

undertaken. The landscape of filtering and circumvention technology is always changing.

As new information becomes available about deployed filtering techniques, and as

interaction with users elucidates the design goals, new iterations of the design concept

were made. This chapter considered the initial design reflections leading up to the final

design. Evaluation of the final design is presented in the evaluation chapter.

2.3 DESIGN CONCEPT 1

Motivation

The original idea for a circumvention tool was conceived during the “Arab

spring” revolutions of 2011. At this time, American media gave credit for the revolutions

to Twitter for enabling both coordination of protests and dissemination of news and

statements from the protesters to the world at large. Due to national media blackouts and

 22

restriction of access for international journalists, information regarding the revolutions

through traditional news outlets was limited and Twitter became a primary source of

news for Americans seeking to follow the folding events. It was possible to imagine by

extension that Twitter was a primary source of credible and relevant information for

people residing in the Arab Spring countries. Unfortunately, Twitter was subsequently

filtered in many of these countries.

Design Concept

The design concept was a proxy using Dust that would allow access to Twitter

from Arab Spring countries. Through Twitter, credible and relevant information about

what was happening in those countries could be accessed.

Embodied Values

The core value of allowing access to credible and relevant information was

present in this early prototype, although the scope was greater than just a proxy. Also

included in the project was an archive of all information related to the Arab Spring

revolutions. This version of the project was also focused on posting of information as

reading it.

Implications for the Dust Engine

An important consideration at this time was that the size of a tweet is very small,

140 characters. This can easily fit into a single UDP packet. The first version of Dust

therefore concentrated on conversations consisting of a single UDP packet. UDP

transport was implemented and TCP transport was not. Also at this time Dust was

compatible only with IPv6; IP6 over IPv4 tunneling, such as Teredo, was necessary to

use it on IPv4 networks.

 23

Design Reflections

One issue with the values embodied by this solution was that some participants in

the Arab spring revolutions considered Twitter to be symbolic not of freedom of

communication, but of American cultural imperialism. They claimed that the

conversations on Twitter did not represent what was going on in their countries, but

rather that of expatriates living in America, which they argued were not representative of

local sentiment. They also claimed that Twitter provided no organizational role in the

protests. A second issue is that Twitter is a centralized, commercial service that has no

particular interest in use as part of organized poltical revolution. It is therefore not

designed with this use case in mind and lacks some desirable features.

Of primary importance was a technical issue with having users log into Twitter

using a proxy service. There are two ways to authenticate with Twitter. The first is to

furnish the username and password for the account to the application. This method has

poor security properties and is no longer used by most applications. The method Twitter

prefers developers to use is OAuth, a protocol by which a user can authorize an

application to have access to their account by means of an access token. The app presents

the access token to gain access to the account, but the user can revoke the token at any

time. This method has better security properties. However, the way OAuth is

implemented with Twitter, authenticating an application requires that the user visit the

Twitter website. Since the Twitter website is filtered in this use case, in order to create a

Dust-enabled Twitter client a Dust-enabled web browser must also be created. This is

prohibitively complicated for the use case. A second version of this application was also

attempted using open source software for running a service similar to Twitter called

StatusNet (now renamed to pump.io). This software is similar to Twitter, but is

decentralized in the sense that anyone can install their own StatusNet service.

 24

Unfortunately, StatusNet also uses OAuth for authentication and so has similar problems.

However, since it is open source it can be modified to allow for a more convenient

authentication mode. The question then becomes whether access to a Twitter-like service

is what is important or if only access to Twitter itself has value. A more fundamental

question is whether or not people in Arab Spring countries do in fact use Twitter as a

primary source of credible and relevant information.

2.4 DESIGN CONCEPT 2

Motivation

The goal was to replace the centralized Twitter infrastructure with a decentralized

publishing medium. Also important was providing a means of authentication for authors

that could work on a filtered network.

Design Concept

A blog publishing setup was created that allowed posting using messages encoded

using Dust. Authentication for these messages used public key cryptography and digital

signatures, so no separate communication with a web server was necessary to

authenticate the author. When a new message arrived for posting, the attached digital

signature could be checked to verify the author before the post was made public. The

Octopress blog management software was used because, unlike other popular blogging

solutions, its output is static HTML files that can be hosted anywhere and mirrored easily

in case the original hosting site is blocked or taken down.

Embodied Values

This design concept valued decentralization over centralized services. Therefore,

the emphasis was on the technical mechanism of distributing information rather than on

 25

the social network provided by services such as Twitter. It also values protecting posting

over protecting reading. Protection of reading was facilitated by making it easy for third

parties to set up mirrors of content. This assumes a widespread interest in the content and

a network of volunteers to set up mirrors and distribute their addresses to readers. Here

the Internet is being treated much as Twitter was portrayed in the Arab Spring, as an

alternative to print and television news. While hosting of content is more decentralized in

this design, production of content is in some sense more centralized. While anyone is free

to run their own blog site, the necessity of finding and keeping up with blogs makes it

more difficult for every person to have their own blog, as compared to the ease of use of

a Twitter account.

Implications for the Dust Engine

This design focuses entirely on publishing and not reading. Circumvention of

filtering on the reading side is provided by mirrors of the sites. Dust is only responsible

for transporting the posts when they are originally posted. This changes the traffic profile

considerably. Compared to tweets, posts are significantly longer. 140 characters would be

considered quite short according to blog post standards. A single UDP packet is therefore

no longer a viable means of transport for posts. Therefore, both TCP transports and a

layered protocol that allows longer messages to be sent over multiple UDP packets were

implemented.

Design Reflections

A major change in this design was a focus on publishing rather than an equal

emphasis on publishing and reading. An important question is whether a new publishing

platform would be adopted by users. Users could possibly prefer to publish on Twitter

because it is more convenient for promoting posts. Since Twitter publishing has technical

 26

challenges in this use case, an alternative publishing platform was developed that

overcomes these challenges. However, getting users to migrate to a new platform may

prove to be an even more difficult challenge.

2.5 DESIGN CONCEPT 3

Motivation

The third iteration came from a discussion with a user on a filtered network who

posted on a circumvention tool mailing list about where people in her country get their

news. The American news media promoted the idea that people in Arab Spring got their

news about current events from Twitter, but some people from Arab Spring countries said

that this was not so. In this particular conversation, the poster said that people in her

country get their news mostly from blogs. The major news sites are state controlled, but

there are some independent news blogs. They are hosted in the United States because

they would be shut down if they were hosted in the country with the filtered network.

Design Concept

This iteration was therefore a news reader. Creating a news reader instead of a

Twitter proxy solved some of the major problems of previous iterations. News sites are

public and so do not require authentication. While news sites can be read using a web

browser, many also support the RSS protocol for downloading news articles to read in a

dedicated news-reader application. In fact, many news sites support RSS. Supporting

only RSS is much simpler to do securely than supporting all of the operations available in

a full web browser. An RSS processor was created that could download RSS files from

web servers, sanitize them to remove any possible security problems, and package them

in a compact format for transmission to the user.

 27

Embodied Values

This design iteration flips the emphasis from publishing to reading. There is no

capability for publishing in most RSS news readers, so only reading is supported over

Dust and publishing must be accomplished through other tools. This is a major change

from the last version, which supported only publishing over Dust. The reason for this

change is the realization that the problem facing news sites for countries with filtered

networks is not publishing, but reading. By hosting the sites outside of the country with

the filtered network, they are relatively safe from being taken down. Only a small number

of people need to be able to publish to the major news sites and they can even do so from

outside of the country. The readers are the majority of filtered users and so reading is the

primary activity to protect in order for news sites to be a practical source of credible and

relevant information for people in the country.

This design is also a reversal of the previous design goal of seeking decentralized

platforms. While news sites are more decentralized than Twitter, they are less

decentralized than individual blogs inasmuch as there are only a few major news sites.

This is a compromise in terms of centralization and decentralization that is intended to

represent a good balance point between flexibility and usability. Fortunately, the primary

reason for seeking decentralization in previous designs was to allow for a means of

decentralization authentication that could work practically on filtered networks. Since

this iteration supports only reading and not publishing, no authentication is necessary.

Therefore, the primary problem for this project caused by centralized platforms has been

solved by loosening the requirements.

Implications for the Dust Engine

RSS traffic has a similar profile to loading a website or downloading a file. RSS is

carried over HTTP and the content is XML with some embedded HTML and hyperlinked

 28

images. The traffic is therefore similar to normal HTTP traffic, making HTTP a good

profile to emulate on networks that allow general HTTP but specifically block RSS or

specific news websites. Fortunately, HTTP is one of the most studied protocols and much

data exists from which to build models. On networks that filter HTTP generally, another

profile with similar characteristics must be chosen instead. Mail protocols such as POP

and IMAP, for instance, have similar profiles in some ways to HTTP.

Design Reflections

The difficulty for this version of the project came when considering the user

interface for the news reader. There are a variety of RSS-compatible news readers in

existence and each has a very different user interface with features optimized for different

uses of the RSS technology. For instance, some users subscribe to hundreds of different

news sites, many of them blogs about specific niche topics. Others subscribe to a few

major news sites. Some users use RSS news readers primarily to read webcomics and do

not use them for news sites. Some users read every article, while others skim titles and

only read a few articles. Users of RSS news readers had a diverse variety of responses

when asked about what features are essential to an RSS news reader.

2.6 DESIGN CONCEPT 4

Motivation

The next iteration was motivated by talking to circumvention tool users and

developers at a private conference gathering circumvention technology researchers to

discuss the landscape of the field. The refrain heard over and over again from tool

developers is that users do not want to use new applications. They want to enable the

users interfaces they already use to work on filtered networks.

 29

Design Concept

Instead of developing a unique user interface for the news reader application, in

this iteration it has been converted to a proxy that enables an existing news reader

application to work over Dust.

Embodied Values

Though this application is implemented as a network proxy, it is not designed to

be a general-purpose proxy for all network traffic. It is an application-specific network

proxy that is designed to only carry specific traffic.

Implications for the Dust Engine

For most of the Dust engine, it does not matter if there is a custom interface or

not. The one layer that does change is the application protocol layer. In previous

iterations, a compact message-based protocol was used, tailored to each specific

application. However, in order to act as proxy a stream-based protocol is necessary. A

general-purpose stream-based protocol was therefore developed.

Design Reflections

This design on the one hand simplifies the application in that it no longer requires

a complex user interface, and on the other hand complicates the application as it must

now support a more generalized streaming protocol instead of a simple application-

specific message-based protocol. This may be overall for the best as this added

complexity is entirely hidden from the user.

 30

2.7 DESIGN CONCEPT 5

Motivation

A non-profit organization that studies Internet freedom issues released a report on

the state of Internet freedom in one country with a filtered network [34]. It covered not

just the filtering in place on the network, but also a broader strategy of control. In

addition to filtering, more active attacks are also being used. A national web browser and

an operating system are being promoted to users. These tools undermine the basic privacy

and security properties provided by HTTPS when used normally, allowing for the filters

to decrypt encrypted traffic.

This attack is known as Man-in-the-Middle (MitM) and is one variant of a family

of attacks that allow for decryption of intercepted encrypted messages. In this variant, the

national web browser is configured to accept certificates from the national Certificate

Authority (CA). The CA then generates new certificates for all websites. One way to

think of these is as counterfeit certificates. They are generated by the national CA without

any relationship with the real owner of the website for which the certificate is being

generated. The goal of the national CA in generating these new certificates is that, unlike

the original certificate, the national CA knows the private key for the counterfeit version.

The CA shares the certificate with the national browser and with the filters. The private

key for the certificate is also shared with the filters. The filter administrators combine

their standard filtering hardware with a specialized device known as an SSL tap. The SSL

tap stores the counterfeit certificates and corresponding private keys. Whenever the filter

encounters an HTTPS connection (or anything else encrypted with SSL), it sends the

traffic first through the SSL tap. The SSL tap does not pass the traffic through. Instead, it

first pretends to be the client. It negotiates an SSL connection with the server, obtaining

the decrypted content just as a web browser would. It then returns this decrypted content

 31

to the filter for filtering. When the filter is done examining the traffic, and perhaps

filtering it, it sends the modified traffic back into the SSL tap for a second pass. In this

second pass, the decrypted traffic is re-encrypted, this time using the counterfeit

certificate. The SSL tap then pretends to be the server and negotiates an SSL connection

with the client. The client obtains encrypted traffic and decrypts it normally. The only

difference from the client’s perspective is that the certificate has changed. The efficacy of

this attack depends on how the client deals with this situation. If the client does not

accept the national CA as a valid authority, then it does not accept the certificate and is

not able to make a connection to the server. This is why a national web browser and a

national operating system that distributes this web browser is necessary to ensure that the

web browser accepts certificates generated by the national CA. If the client accepts the

certificate, then it allows the connection. What the adversary has achieved is the ability to

examine all encrypted traffic as if it were plaintext, without any warning to the user.

Design Concept

The basic design concept remains the same, a proxy that allows downloading of

RSS news feeds for reading in a news-reader application. A question remaining from the

previous iteration of the design concept was what specific RSS news reader should be

used. In this iteration, desktop news readers were eliminated from consideration in favor

of a mobile news reader application for the Android platform. The desktop was

previously an attractive platform to target for this tool due to the widespread market

penetration of desktop computers. However, with the advent of the national operating

system, deploying circumvention tools to desktops could be more difficult. A mobile

operating system was therefore chosen as an alternative as the country with the national

operating systems for desktops has not yet developed a national mobile operating system.

 32

The possible difficulty in making this transition is that mobile news readers have a more

limited feature set than their desktop equivalents. One of the missing features on some

mobile applications is the ability to configure the application to use a proxy. Fortunately,

one news reader application was found that supported configuration of a proxy, Courier

by the Guardian Project. It has been developed specifically for use with the Tor

anonymizing proxy and therefore implements proxy support. The choice was therefore

made to use Courier as the news reader application and to develop a compatible proxy

that enables Courier to be used with Dust traffic encoding.

Embodied Values

This iteration of the design aligns the tool more closely with the community of

practice around circumvention tools. While the choice of Courier was a pragmatic one as

it provides the needed feature of compatibility with proxies, it is also an application

created by the Guardian Project. Guardian is an active member of the circumvention tool

developer community and works closely with the Tor project. Due to this close

integration between Guardian applications and Tor, the simplest path for integrating

Operator with Courier also allows for easy integration with Tor. While integration with

Tor is not a direct goal of this design project, Tor is leading in research and development

of obfuscating protocols with the development of the Pluggable Transport framework for

adding network protocol obfuscation to existing applications. Compatibility with Tor

therefore brings Dust in line with the emerging standard for circumvention tool

development. There is a tradeoff here in terms of embodied values. In the original

conception for Dust, efficient purpose-specific application layer protocols were used. The

intention was to use transports that were tolerant to extreme networking conditions such

as high latency, low bandwidth, and unidirectional traffic flow. These conditions are

 33

opposite of what is required for Tor, which is a low-latency, high-bandwidth,

bidirectional traffic flow protocol. Dust was also originally message-based, whereas Tor

is connection-based. In adopting a proxy approach and requiring compatibility with

existing software, the technical requirements for the transports used by Dust have

changed, as has the application layer protocol. Dust is therefore now compatible with Tor

and can ostensibly be used to proxy Tor connections. Dust has therefore moved from

being an approach that was incompatible with existing tools, to being compatible with the

major tools currently in use. While there may be a tradeoff in efficiency and quality of

service during extreme network conditions, it is now easier to compare Dust to existing

obfuscating protocols already used with Tor.

Implications for the Dust Engine

In some countries with filtered networks, HTTPS is no longer always going to

work as a protocol that can bypass filters. Dust can shape traffic to resemble any

protocol, including HTTPS. However, this resemblance is only on a statistical level.

While this works for filters, it does not work for SSL taps. The SSL taps interactively

negotiate SSL connections with servers. Therefore, real SSL is required rather than just a

statistical model. The SSL is then stripped away and replaced with a new SSL wrapper,

destroying any information Dust might have encoded in the SSL layer. To use HTTPS,

Dust would need to encode to an HTTP shaping target and then wrap this in SSL. While

this could be done, it would provide no advantage over just using plain HTTP. Therefore,

plain HTTP and other unencrypted protocols that do not use SSL have gained some status

as preferred targets for Dust encodings.

 34

In terms of implementation, the most convenient way to deploy Dust to work with

Courier is to package them together. Android applications must be deployed in the form

of packages and it is difficult to have one package depend on another. The common

practice on the Android platform is to distribute self-contained packages. The Guardian

Project has already done the hard work on packaging Courier so that it can detect and use

a proxy if a proxy is installed. Specifically, Guardian distributes an Orbot package that

provides a Tor proxy. Courier and other Guardian apps detect if Orbot is installed. If it is

installed, these apps automatically use the Tor proxy bundled with Orbot. This by itself is

not helpful in getting a Dust proxy integrated with Courier. However, current versions of

Orbot also ship with obfs4proxy, a bundle application that implements the Pluggable

Transports specification. It includes several obfuscating protocol implementations that

wrap the Tor connections, such as obfs3 and obfs4. Since Orbot and obfs4proxy are both

open source, the simplest integration path is to include Dust into a new version of

obfs4proxy and include this version in a custom Orbot package. When installed alongside

Courier, Dust can be used to fetch RSS news feeds. The obfs4proxy application

conveniently does the hard work of implementing the Pluggable Transport specification.

It provides a simple API that Dust can use to provide protocol obfuscation services. This

is a major change for the architecture of the Dust implementation as Dust is now included

in obfs4proxy rather than being integrated directly into each application. The application

now needs to support using either obfs4proxy directly or Orbot rather than using Dust

directly. Conveniently, several applications already exist which do this, mostly

maintained by the Guardian Project.

 35

Design Reflections

One effect of these revelations on the Internet control strategy for some countries

with filtered networks is to confirm that the current direction is the right choice in several

ways. RSS news readers are one way to read news, but direct access to the news websites

through a web browser is also an option. In light of the adoption of a national web

browser in at least one country with a filtered network, the latter approach does not seem

to be preferable. The forefront of circumvention tools may be in mobile apps, at least for

the moment.

2.8 DESIGN CONCEPT 6

Motivation

Deciding to implement Dust as a Pluggable Transport brought scoping

constraints that simplified the design decisions for the project. The remaining decision to

be made was on what models to use with Dust to create a Pluggable Transport effective

for transporting news-reader traffic across the filters. One of the lessons learned from the

process of implementing and testing Dust as a Pluggable Transport was that there is a

downside of shaping packet timing. In order to obfuscate the properties of the tunneled

traffic, Dust always follows the model rather than the tunneled traffic. This includes

sending packets when the model specifies it should send packets rather than when the

tunneled traffic actually has data to send. Dust traffic is therefore at a constant bitrate

(with random variation). This traffic profile is very different from news-reader traffic,

which follows a request/response format. From a bandwidth perspective, this looks like a

burst of high bandwidth in request direction (and silence in the response direction),

followed by a sustained high bandwidth response (and silence in the request direction).

This turns out to be a worst-case scenario for the way Dust does shaping of packet

 36

timing. It averages these bursts into a constant bitrate held for the duration of the

connection. This means that the time it takes to send the request is the normal duration of

a whole connection. The request is sent too slowly, and since the response blocks on the

completion of the request, this makes the overall connection slow. In order to achieve

enough effective bandwidth, the transport must therefore be configured to use a higher

average bandwidth than the application. In the case of news-reader traffic, the request

side must be set high enough that the request can finish. Since the Dust transport

consumes constant bandwidth, this amount of bandwidth is in constant use regardless,

even after the request has completed. Fortunately, a news reader is a low-bandwidth

application, so the constant bandwidth use is fairly low. However, complications are

caused by the fact that the Courier news reader uses Tor and that in this use case Dust

wraps Tor protocol rather than the news-reader traffic directly. The Tor protocol requires

a minimum bandwidth and latency in order to work correctly, regardless of what

application it is transporting. Therefore, the constant bandwidth had to be set to

something appropriate for Tor to function rather than just enough for RSS.

Design Concept

Packet timing shaping was dropped from the design concept in this iteration

inasmuch as it was too expensive to be practical. Models using the remaining features of

byte sequences, content distribution, entropy, and packet length were then developed for

the use case of the Courier news reader for Android. Three different models were chosen:

HTTP, HTTPS, and RTSP. HTTP is an obvious choice because, historically, there was an

incident where all protocols except for HTTP were blocked. Therefore at least one HTTP

model is a necessity. HTTPS was chosen because it is the most popular protocol right

now for mimicry. Existing tools such as Tor mimic HTTPS by encapsulating the

 37

application protocol inside of SSL, similar to how HTTPS is HTTP encapsulated in SSL.

RTSP was chosen to show that it is possible to use Dust with a variety of protocols, not

just the standard choices of HTTP and HTTPS. RTSP is a practical choice for this use

case because it resembles what Tor traffic already looks like more closely than HTTP or

HTTPS.

Embodied Values

In may seem that due to the choice to make Dust into a Pluggable Transport, there

is a sense in which the specific circumvention tool is no longer as important. The Dust

Pluggable Transport is a generic encapsulation for Tor traffic, which is itself a generic

encapsulation of traffic for a variety of applications from web browsers to news readers.

However, the Dust engine is only one part of the overall Dust system. Just as important as

the engine is the set of models. The efficiency of the models depends on the match

between the model and the application protocol being encapsulated. Therefore, while the

Dust engine is generic, the models are not. These models were chosen for the specific use

case for news-reader traffic carried over Tor. Other applications with a similar traffic

pattern may work equally well. However, applications with very different characteristics

most likely have poor performance, perhaps to the point of being non-functional.

Therefore, there are still choices to make that carry embodied values. The choice to

implement the Pluggable Transport standard just moved these value-laden choices from

the software into the models.

The choice of transports that were provided also has embodied values. HTTP was

chosen to plan for the worst-case scenario: everything is blocked except for one protocol.

It is the fallback choice. HTTPS was chosen because it is the popular choice. It is likely

to work in common scenarios other than the worst-case scenario. It is also easy to

 38

compare Dust using HTTPS to other obfuscation methods since they also often mimic

HTTPS. It is the practical, mainstream choice. RTSP was chosen because it has better

characteristics for matching Tor traffic than HTTP or HTTPS. It was also chosen because

it is a not a popular choice for obfuscating protocols. It represents an alternative choice

that is experimental. By providing multiple models, several different, perhaps conflicting,

values can be embodied simultaneously and users can choose those that are appropriate

for their situations.

Implications for the Dust Engine

This iteration had minimal effect on the Dust engine as it was mostly a matter of

choosing models, which are interchangeable within the engine. The one significant

change to the engine was to stop doing shaping of timing. This is a minor change on

paper, but in terms of implementation was a major architectural change because it

affected the scheduling semantics of packets. Fortunately, this was one of the more

difficult architectural differences to implement between Dust and other transports, so

eliminating it simplified the architecture. Most transports use a “push” architecture in

which new transport packets are sent only when new application data arrives. Since Dust

sent transport packets according to the model rather than based on what the application

level traffic was doing, it had to have entirely different scheduling semantics based on

timers. Eliminating timing shaping allows Dust to use the more traditional push

architecture, making it more similar to other transports. Therefore the existing Pluggable

Transport code is a better fit and the overall Dust code is simplified.

 39

Design Reflections

This concludes the major design decisions for the project. The engine has been

stabilized and the models have been chosen. Whether these models turned out to be good

choices is explored in the evaluation section.

2.9 CONCLUSION

The design reflection process occurred throughout the duration of the project.

Here it is presented as a linear process as if all design reflection occurred first, followed

by implementation and then evaluation. In actual execution, these processes happened

simultaneously. All of the designs were to some extent implemented and evaluated. The

design reflections therefore represent an immense amount of engineering effort. A typical

research effort would most likely have stopped after the first prototype was built, as this

would be sufficient for a research paper. However, the value-sensitive design approach

requires a higher standard of justification and as a result six different design concepts

were implemented. The final result might seem somewhat mundane as it is essentially a

Pluggable Transport for Tor. Several research projects started with the goal of designing

a Pluggable Transport for Tor from the outset and so achieved this with a much smaller

expenditure of time and effort. However, the value of design reflection is not just what

ends up being built, but also learning from all of the design concepts that were in the end

found inadequate. The overall takeaway from this process is that the circumvention tool

space is conservative about new tools. The most viable approach is to make the minimum

intervention necessary to enable an existing tool to work on filtered networks. Now that

Pluggable Transports has emerged as a standard, this is the obvious target for future

work. There are trade-offs here, and designing for the Pluggable Transport standard

brings some constraints that may eventually turn out to be undesirable. However, in the

 40

near-term, this is probably the best approach as the key to adoption is to have your

transport deployed as even the best possible transport is not useful if no one is using it.

It was a long process to implement six design concepts. It is of interest to see how

the embodied values changed throughout the process. The goal from the outset was to

provide access to credible and relevant information. Existing networks fail to achieve this

goal because of filtering. The first design concept was a proxy to access Twitter.

However, discussion with users revealed that Twitter was not the primary source for

credible and relevant information, but rather blogs were used. The next concept was a

way to publish blogs. However, further discussion with users revealed that filtering of

publishing was not the major issue, but rather filtering of reading. The next concept was

to create a news reader, but discussion with users showed that they did not want a new

application but rather for their existing applications to work on filtered networks. The

next concept was to create a proxy that enabled a desktop news reader to work on filtered

networks, but a new report revealed that the launch of the national operating system and

national web browser in one country with filtered networks destroyed the security of

desktop apps. The next concept was to deploy a proxy for a news reader on a mobile

operating system, avoiding the issues with desktop application security. This was the

final design for the engine, at which point the next consideration was what models to use.

In the final design concept, one feature (packet timing) was eliminated in order to

approve efficiency and then three models were chosen: HTTP, HTTPS, and RTSP.

Overall, the core value besides the original goal of access to credible and relevant

information has been user-centered design. Whenever the problem with a design was not

technical in nature, it was an issue of user adoption. Three questions could be asked that

guided the whole design process:

• How do the users access credible and relevant information?

 41

• What platforms can be used for deploying tools that do not undermine credibility?

• What tools will users actually use?

These are three questions that can be used in future value-sensitive design

processes for the development of other filtering circumvention tools. So this represents a

general learning from incorporating this design process in addition to the specific design

concept that was developed as the project for implementation and evaluation.

 42

3. Model Building

3.1 INTRODUCTION

The core of Dust is to develop models of how filters work such that

circumvention tools can be automatically generated to circumvent those filters. This

requires a combination of semantic and statistical modeling. On the semantic side,

modeling requires determining which features are significant. On the statistical side,

observations of each feature are generalized into a probability distribution for that

feature. At the highest level, a model of a filter consists of two categories: blocked traffic

and allowed traffic. These categories can be subdivided into a hierarchy of subcategories,

down to the level of individual protocols. The specific taxonomy is unique to each

filtering device.

Drilling down into the taxonomy of protocols, the filtering rules for each protocol

can also be modeled. The first decision when modeling a protocol is to determine which

observable characteristics of the protocol are significant. Different protocol classification

techniques use different observable properties. Depending on the filtering device and the

specific protocol, different properties are significant. Once a set of properties has been

chosen, a probability model can be constructed for each property. The use of a probability

model allows for individual observations to be generalized. Observed data is used to

generate the probability model and then the circumvention tool uses the probability

model to generate new traffic. By using probability models drawn from the filter model's

set of allowed traffic, the traffic that is generated has characteristics resembling allowed

traffic across all modeled properties for that filter. As the generated traffic is categorized

by the filter as allowed traffic, the filter allows it to pass through.

An important difference between the models used here and those used in other

unobservable communication research is that what is being modeled is not solely the

 43

characteristics of each protocol, but also the significant characteristics as defined by the

filter. Properties that the filter does not use for classification purposes are not included in

the model. The probability models of protocols are the models of the protocols as seen

and understood by the filter. In this sense they are actually models of different aspects of

the filter and not of the protocols themselves. In contrast, other work in the field focuses

on modeling protocols regardless of the context of the specific filter. As an example of

the difference, with this approach if a filter blocks some HTTP traffic and allows some

HTTP traffic, then these would be represented as two different protocols ("blocked

HTTP" and "allowed HTTP") with different probability distributions. The conventional

approach would be to model one protocol ("HTTP") with an attempt to find a protocol

that is always going to be classified into an allowed category. Unfortunately, that

approach is not viable given how filtering works. There is no single protocol that is

guaranteed to be safe. Even traffic using an individual protocol such as HTTP can be

further subdivided across any of its significant properties to selectively filter only some

traffic using that protocol. An adaptive approach in which the protocol models can

change as easily as the filters can be reconfigured is therefore more versatile.

3.1.1 Goals

Modeling is a process of abstraction and estimation. By the nature of this process,

there are discrepancies between the model and the modeled object. Evaluation of a model

therefore requires a context that determines which features are important. Within this

context, models can be compared in terms of goodness of fit according to a chosen metric

across the chosen set of features. However, comparable models are not always available.

In the case of this research, there are no previous studies that have modeled the same

 44

adversaries with the same metrics to compare against. How then can the score given a

specific model be interpreted to determine if the model is a good model or a poor one?

The soundness of the adversary models is first argued by way of the means of

construction. It was shown that the features chosen for the models are based on empirical

research into filtering hardware. The specific modeling for each feature was based on an

empirical field study where data was collected in 4 countries. The field study is discussed

in depth in section 3.2.2 and the results are shown in Figures 1 through 18 and

Illustrations 1 through 4. This data was used to build a test model using the chosen

feature set. The field study data was used to determine the underlying distributions for

each feature that was used to fit the models. Then, a model was constructed using those

distributions to test overall goodness-of-fit. This model distinguishes between two types

of traffic: HTTP and HTTPS. The scores for this model were used as a baseline for

understanding scores for adversary models.

When scores for model goodness-of-fit were interpreted, two methods were used.

First, the goodness-of-fit for individual features was examined. These scores can be

compared across models but not across features. This method was used to compare

different adversary models on a feature-by-feature basis. A difference in score between

two models does not necessary mean that one is better than the other. Different

adversaries focus on different protocols and for each set of protocols the features may

carry varying amounts of information. For instance, entropy is primarily useful for

distinguishing between encrypted and unencrypted messages. Therefore it is a useful

metric for distinguishing between HTTP and HTTPS. However, if an adversary were

attempting to distinguish between two encrypted protocols, then the entropy feature

carries less information in that context. The adversary using entropy to distinguish

between two encrypted protocols would perform more poorly not due to the construction

 45

of the model, but due to the decreased available information. Therefore, where feature

scores are useful is in comparing specific features across different models to determine

the efficacy of different features for distinguishing sets of protocols. A wide variance in

the goodness-of-fit for a specific feature might indicate that a more optimal distribution

function might exist. For instance, a normal distribution was originally used for modeling

durations, but it was determined through fitting against the empirical data that an

exponential function is a better fit.

The second metric of evaluation was the overall accuracy of the model in

correctly classifying traffic. This was tested in the models by means of two-fold cross-

validation, in which connections are assigned randomly to two equal-sized training and

validation groups. The training set is used to train the model and then the model is used to

predict the data in the validation group. The testing and training groups are then switched

so as to build and validate a second model. The cross-validation process results in two

different models for each feature of each protocol. Later, in the evaluation stage, these

two models were each used to build simulated adversaries and protocol obfuscating

encodings. Each encoding of the two encodings can then be tested against each of the two

adversaries, resulting in four test results that measure the effectiveness of the encoding.

In summary, the goal of model building was to demonstrate that the models have

been constructed in a sound manner based on empirical evidence for the feature set and

the distribution functions for those features. Additionally, the goodness-of-fit and

accuracy metrics were used as baseline measurements. Cross-validation was used to show

that the models accurately represent the observed features without overfitting.

 46

3.2 PRELIMINARY RESEARCH

Before commencing the statistical analysis and goodness-of-fit tests, the semantic

aspects of the models needed to be determined and data needed to be collected on which

to do statistical analysis. The semantic analysis was done using a laboratory study of two

hardware filtering devices. The results of this study determined what features of network

traffic should be collected for statistical analysis. The data collection was done using a

field study in 4 countries, focusing specifically on the chosen features. Once was the

preliminary research was done, the collected data was used to for building models to be

tested in the evaluation section.

3.2.1 Hardware Study

Preliminary research on model building was done by investigation of filtering

hardware. Two filtering devices were studied: a Blue Coat PS12000 and a Procera

PL8720. Blue Coat is a popular vendor with wide deployment. Procera is a smaller

vendor with more advanced devices. Studying these two devices provided for a practical

and grounded look at the state of filtering technology. The devices were first studied by

reading the product documentation and asking questions of the support engineers.

Once the basic capabilities of the devices were determined, a set of utilities to

generate test traffic was written. These tools are open source and available for researchers

to use. They are released under the name “Dust-tools”. Information on downloading the

software written in the course of this dissertation, including Dust-tools, is available in

Appendix D. Details of how the Dust-tools utilities work and how to use them can be

found in Appendix E.

Observations of how the test traffic was classified by the devices allowed a

semantic model to be built. This model captured both the taxonomy used for

classification and the set of rules used to classify traffic into those categories. This

 47

research was the basis for the semantic component of the filter models. The significant

characteristics of traffic used by these devices for protocol classification was used as the

template for building filter models.

The results of the hardware study show that filtering technology in the field is not

as advanced as the hypothetical adversaries discussed in the unobservable

communications literature. The primary methods of classification are based on shallow

examination of the packet headers with the primary use of Deep Packet Inspection being

matching of static strings on a per-packet basis. Entropy and packet timing are used, but

in a more limited way. Use of packet length for classification was not observed in these

devices. Additionally, only the first few packets of a flow are considered. Once a flow is

classified, further packets are not examined. There are additional constraints on the

abilities of classifiers. For instance, both sides of the connection need to be visible in

order for classification to work.

In order for filtering hardware to be effective at classifying real-world traffic, it

requires customization by the user. A combination of connection properties can be

assembled to create a traffic profile that can identify targeted traffic, based on

automatically identified service information, statistical properties, and packet header

information such as IPs and ports. For the Blue Coat device, no statistical information is

available for custom filters. The automatic service discovery is therefore of primary

importance in creating custom filters. For the Procera device, several statistical properties

based on packet size and flow direction are packaged into a few set categories such as

"Download", "Unidirectional", and "Streaming". These connection flags can be used to

create custom filters that, for instance, block unclassified protocols that are "Random

looking". A key element of creating custom filters is that unclassified traffic is put into its

own category (either "Unknown" or "default", depending on the vendor) and this

 48

category can be filtered in the same way as an identified protocol. All unclassified traffic

can be filtered the same way, or custom filters can break apart the unclassified traffic

based on IP and port information, using either whitelists or blacklists for filtering.

The customizability of these devices means that there is not one particular

protocol that can circumvent every device. Each device is configured to block certain

protocols and to allow certain protocols to pass. An approach that mimics an existing

protocol such as SSL, even if it is entirely effective at mimicry, is an ineffective encoding

if all SSL is filtered. Similarly, encodings that do not match any recognized protocol are

ineffective if all unclassified traffic is filtered. However, whether unclassified traffic or

SSL are filtered is dependent on the network inasmuch as each device is configured

individually.

The definitive way to know what works on a given network is to try different

encodings and see which ones get past the filter. Once the set of blocked and passed

protocols has been discovered, Dust can be configured to encode traffic to either mimic a

set of protocols that are allowed or, if unclassified traffic is passed, encode traffic to

avoid sharing characteristics of the set of protocols that are blocked. Even when empirical

data is not available, the filtering devices have specific constraints in their functionality

that ensure that once the protocol partition has been determined a suitable encoding can

be generated. In the case of the Blue Coat device, all that is necessary is to either produce

or avoid a static string in the right offset of one of the initial packets. If assigning the flow

to the unclassified category is sufficient, then simple content encryption, which avoids

any static strings whatsoever, should be effective. For the Procera device, the signatures

were more complicated. In addition to dealing with the same static string issues as the

Blue Coat device, it could also be important to shape the traffic to enable and disable the

correct set of flags by changing the statistical properties of the content, size, and flow

 49

direction. Shaping these properties to achieve the correct set of flags could be necessary

even if the protocol was unclassified as the custom filtering rules can further category

unclassified traffic based on flags.

Finally, it is of particular importance to note that protocol obfuscation alone is not

sufficient to bypass filters if servers with known IPs are used. Classifying traffic based on

IP is a core piece of functionality of filtering hardware and new DPI approaches do not

make this technique obsolete, but rather make it more powerful. Automatic service

identification can be combined with host-based filtering for more precise filtering that

blocks targeted traffic while leaving untargeted traffic unaffected. The first step in

avoiding filtering is therefore to have a set of server IPs that have not been added to the

filtering blacklist.

The result of the hardware study is the following list of features chosen for

inclusion in the adversary models:

• Byte sequence matching on packet contents

• Packet lengths

• Connection duration

• Entropy of contents

• Flow rate in bytes per millisecond

3.2.2 Field Study

After completion of the hardware study, a field study was carried out in which

packet capture data was collected in four countries: Burma, Kazahkstan, Jordan, and

Nigeria. This study was conducted as part of a larger study on Internet filtering and

surveillance technology deployment and policy under a grant-funded project called

AGAINST. The research was coordinated by Internews, a non-profit organization that

 50

studies Internet freedom worldwide. The research was sponsored by a grant from the US

Department of State, Bureau of Democracy, Human Rights, and Labor. The data was

collected independently by in-country researchers working for Internews. The role of the

author of this dissertation was to create a tool to gather the necessary data and to analyze

the results. The result of these efforts was an open-source network measurement tool

called CensorProbe and a report, published by Internews, on the state of filtering and

surveillance in these countries. Information to download the source to all of the software

developed as part of this dissertation research, including CensorProbe, can be found in

Appendix D. The data collection methodology was designed to serve a dual purpose of

also being useful as a field study for this dissertation.

While CensorProbe collected several different metrics for each country, for the

purposes of this dissertation the focus was on the packet capture data. The packet capture

data was collected by an automated tool that would record network traffic while driving a

dedicated instance of the Firefox web browser to visit a fixed set of HTTP and HTTPS

websites. These tests were conducted on a dedicated laptop with CensorProbe pre-

installed. In-country researchers were not required to log into any websites. The tests

were fully automated and did not require any user interaction other than initiating the test

sequence. Therefore, no personal identifying information was collected about the

researchers. The only potentially identifying information in the packet capture data was

the IP address from which the test was being initiated. Researchers were asked to test on

a variety of public networks such as coffee shops and Internet cafes, but were generally

given free reign to conduct the tests at the time and place of their choosing. IP addresses

were removed in the first stage of analysis, leaving only statistical information about the

results of each test.

 51

In order to analyze the data and build adversary models, a set of statistical

analysis tools was created called Adversary Lab. Information for downloading the

software created in the course of this dissertation, including Adversary Lab, is available

in Appendix D. The statistical analysis of the field study data was used to construct

models of HTTP and HTTPS traffic. The following questions were investigated through

analysis of the data:

• For each chosen feature, what distribution function is a good fit for the data?

• Is the data for each protocol significantly different across different countries?

• Do some features fit better on the HTTP than the HTTPS model or vice versa?

The results from this stage of analysis are presented below. Figure 1 through

Figure 18 show graphs of the per-country statistical data for HTTP and HTTPS across the

six features.

 52

Duration

Figure 1: Duration of HTTP connections

Figure 2: Duration of HTTPS connections

HTTP

Duration

Fr
eq
ue
nc
y

0 5 10 15 20

0
50

10
0

15
0

20
0

25
0

30
0 US

AE
TR
KZ
JO

HTTPS

Duration

Fr
eq
ue
nc
y

0 5 10 15 20

0
20

40
60

US
AE
TR
KZ
JO

 53

Figure 1 and Figure 2 show histograms of the duration of connections, which is

calculated as the interval between the time the first packet and last packet in the

connection stream are observed. Packets in both directions were considered when

calculating duration, so duration is the one feature that does not have separate incoming

and outgoing graphs. Not all values are shown. These graphs show a detailed view of the

values from 0 to 20 milliseconds. There is also a relatively flat long tail up to 1000

milliseconds. In these graphs, the x-axis is the duration of the connection in milliseconds.

The possible values for the duration and been divided into buckets and the y-axis is the

frequency with which values in each bucket have been observed. Each color represents a

different dataset from a different country. The legend shows the two letter country code

for each dataset. The data is represented in this way as the characteristic of the data under

consideration is its distribution. As can be seen from these graphs, both HTTP and

HTTPS for all datasets follow a similar distribution.

Lengths – Outgoing

 54

Figure 3: Lengths of outgoing HTTP packets

Figure 4: Lengths of outgoing HTTPS packets

Figure 3 and Figure 4 show the observed outgoing packet lengths. As these

packets are outgoing from the server, they represent HTTP and HTTPS responses. In

these graphs, the x-axis is the observed packet length from 0 to 1500. The y-axis is the

empirical probability for each observed packet length. Each color represents a different

dataset from a different country. The legend shows the two letter country code for each

dataset. The data is represented in this way as the characteristic of the data under

consideration is its distribution. As can be seen from these graphs, both HTTP and

HTTPS for all datasets follow a similar distribution. They both show a low and fairly

evenly distributed probability for most lengths, with a spike towards the high end. This

spike is consistent across datasets.

 55

Lengths – Incoming

Figure 5: Lengths of incoming HTTP packets

Figure 6: Lengths of incoming HTTPS packets

Figure 5 and Figure 6 show the observed incoming packet lengths. As these

packets are coming into the server, they represent HTTP and HTTPS requests. In these

graphs, the x-axis is the observed packet length from 0 to 1500. The y-axis is the

 56

empirical probability that an observed packet was of that length. Each color represents a

different dataset from a different country. The legend shows the two letter country code

for each dataset. The data is represented in this way as the characteristic of the data under

consideration is its distribution. As can be seen from these graphs, both HTTP and

HTTPS for all datasets follow a similar distribution. They both show a fairly even

distribution for most lengths, with a number of spikes. The location of these spikes differs

between HTTP and HTTPS. For either protocol, the location of the spikes is fairly

consistent across datasets.

 57

Entropy – Outgoing

Figure 7: Entropy of outgoing HTTP packets

Figure 8: Entropy of outgoing HTTPS packets

HTTP Outgoing

Entropy

Fr
eq
ue
nc
y

0 2 4 6 8

0
20
0

40
0

60
0

80
0 US

AE
TR
KZ
JO

HTTP Outgoing

Entropy

Fr
eq
ue
nc
y

0 2 4 6 8

0
20

40
60

80 US
AE
TR
KZ
JO

 58

Figure 7 and Figure 8 show histograms of the observed outgoing entropy. As

these packets are outgoing from the server, they represent HTTP and HTTPS responses.

In these graphs, the x-axis is the total first-order entropy of the content of the incoming

packets of an observed connection. The possible values for the entropy and been divided

into buckets and the y-axis is the frequency with which values in each bucket have been

observed. Each color represents a different dataset from a different country. The legend

shows the two letter country code for each dataset. The data is represented in this way as

the characteristic of the data under consideration is its distribution. As can be seen from

these graphs, both HTTP and HTTPS for all datasets follow a similar distribution. The

highest value possible for a first-order entropy calculation is 8. HTTPS, being an

encrypted protocol, is more frequently observed in buckets close to maximum entropy

than HTTP.

 59

Entropy – Incoming

Figure 9: Entropy of incoming HTTP packets

Figure 10: Entropy of incoming HTTPS packets

Figure 9 and Figure 10 show histograms of the observed incoming entropy. As

these packets are incoming to the server, they represent HTTP and HTTPS requests. In

HTTP Incoming

Entropy

Fr
eq
ue
nc
y

0 2 4 6 8

0
20
0

40
0

60
0

80
0 US

AE
TR
KZ
JO

HTTPS Incoming

Entropy

Fr
eq
ue
nc
y

0 2 4 6 8

0
50

10
0

15
0

20
0

25
0

30
0

35
0 US

AE
TR
KZ
JO

 60

these graphs, the x-axis is the total first-order entropy of the content of the incoming

packets of an observed connection. The possible values for the entropy and been divided

into buckets and the y-axis is the frequency with which values in each bucket have been

observed. Each color represents a different dataset from a different country. The legend

shows the two letter country code for each dataset. The data is represented in this way as

the characteristic of the data under consideration is its distribution. As can be seen from

these graphs, both HTTP and HTTPS for all datasets follow a similar distribution. The

highest value possible for a first-order entropy calculation is 8. HTTPS, being an

encrypted protocol, is more frequently observed in buckets close to maximum entropy

than HTTP. In contrast to the outgoing entropy values, the incoming entropy values do

not asymptotically reach a value of 8, but rather reach up towards 8 and then stop.

 61

Flow – Outgoing

Figure 11: Flow of outgoing HTTP packets

Figure 12: Flow of outgoing HTTPS packets

Figure 11 and Figure 12 show histograms of the observed outgoing packet flow. As these
packets are outgoing from the server, they represent HTTP and HTTPS responses. The x-
axis is the number of packets observed for each millisecond sample. The possible values
for the number of packets per millisecond have been divided into buckets and the y-axis
is the frequency with which values in each bucket have been observed. Each color

HTTP Outgoing

Packets per Millisecond

Fr
eq

ue
nc

y

0 50 100 150 200

0
50

0
10

00
15

00

US
AE
TR
KZ
JO

HTTPS Outgoing

Packets per Millisecond

Fr
eq

ue
nc

y

0 50 100 150 200

0
10

0
20

0
30

0
40

0

US
AE
TR
KZ
JO

 62

represents a different dataset from a different country. The legend shows the two letter
country code for each dataset. The data is represented in this way as the characteristic of
the data under consideration is its distribution. As can be seen from these graphs, both
HTTP and HTTPS for all datasets follow a similar distribution.

 63

Flow – Incoming

Figure 13: Flow of incoming HTTP packets

Figure 14: Flow of incoming HTTPS packets

HTTP Incoming

Packets per Millisecond

Fr
eq

ue
nc

y

0 50 100 150 200

0
10

0
20

0
30

0
40

0
50

0
60

0

US
AE
TR
KZ
JO

HTTPS Incoming

Packets per Millisecond

Fr
eq

ue
nc

y

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

US
AE
TR
KZ
JO

 64

Figure 13 and Figure 14 show histograms of the observed incoming packet flow.

As these packets are incoming to the server, they represent HTTP and HTTPS requests.

The x-axis is the number of packets observed for each millisecond sample. The possible

values for the number of packets per millisecond have been divided into buckets and the

y-axis is the frequency with which values in each bucket have been observed. Each color

represents a different dataset from a different country. The legend shows the two letter

country code for each dataset. The data is represented in this way as the characteristic of

the data under consideration is its distribution. As can be seen from these graphs, both

HTTP and HTTPS for all datasets follow a similar distribution.

 65

Content – Outgoing

Figure 15: Content of outgoing HTTP packets

Figure 16: Content of outgoing HTTPS packets

 66

Figure 15 and Figure 16 show the observed first-order distribution of the content

of outgoing packets. As these packets are outgoing from the server, they represent HTTP

and HTTPS responses. In these graphs, the x-axis is the observed byte value from 0 to

255. The y-axis is the empirical probability of each byte value in the content of outgoing

packets. Each color represents a different dataset from a different country. The legend

shows the two letter country code for each dataset. The data is represented in this way as

the characteristic of the data under consideration is its distribution. As can be seen from

these graphs, both HTTP and HTTPS for all datasets follow a similar distribution.

Probabilities are mostly evenly spread through the available options with spikes around

50 and 100. These spikes are consistent across datasets and occur in both HTTP and

HTTPS. HTTPS also has another spike on the low end around 0.

 67

Content – Incoming

Figure 17: Content of incoming HTTP packets

Figure 18: Content of incoming HTTPS packets

 68

Figure 17 and Figure 18 show the observed first-order distribution of the content

of incoming packets. As these packets are incoming to the server, they represent HTTP

and HTTPS requests. In these graphs, the x-axis is the observed byte value from 0 to 255.

The y-axis is the empirical probability of each byte value in the content of incoming

packets. Each color represents a different dataset from a different country. The data is

represented in this way as the characteristic of the data under consideration is its

distribution. As can be seen from these graphs, both HTTP and HTTPS for all datasets

follow a similar distribution. Probabilities are mostly evenly spread through the available

options with spikes around 50 and 100. For HTTP, most values are near zero, whereas

there is more variance for HTTPS. However, both HTTP and HTTPS have spikes around

50 and 100. HTTPS also has another spike on the low end around 0.

Byte Sequence Matching

One feature that is common in filters, but which cannot be represented as a simple

probability distribution function, is byte sequences. Specific sequences of bytes starting

at fixed offsets, usually somewhere in the first packet, can be used to identify protocols.

A circumvention tool must therefore be able to remove byte sequences that identify the

traffic as a protocol that the filter seeks to block, and to reproduce byte sequences that the

filter requires to be present in traffic that it allows through.

The presence or absence of a byte sequence is an existential property rather than a

statistical one. For each connection, either the byte sequence is present or it is absent. For

each filtering rule, either a specific byte sequence is required, or it is forbidden, or it is

ignored. So while the filters do not use statistical rules when employing byte sequence

matching, a statistical analysis can still be used to find which byte sequences are most

probably used in filtering rules. A byte sequence extractor was developed that finds

 69

probable byte sequence that could be used to effectively identify the protocol of observed

traffic. Illustrations 1 through 4 show byte-sequence probability information for both

incoming and outgoing directions for HTTP and HTTPS.

HTTP - Incoming

Illustration 1: Positional probability of byte values in incoming HTTP packets

HTTP – Outgoing

Illustration 2: Positional probability of byte values in outgoing HTTP packets

HTTPS – Incoming

Illustration 3: Positional probability of byte values in incoming HTTPS packets

 70

HTTPS - Outgoing

Illustration 4: Positional probability of byte values in outgoing HTTPS packets

Expanded versions of these images that give more detail are available in

Appendix B.

Illustrations 1 through 4 are observed probability heat maps of the content of the

observed traffic. Each column of pixels represented a fixed offset within the first packet

from 0 on the left to 1440 on the right. Each row shows a particular byte value from 0 on

the top to 255 on the bottom. The color of the pixel represents the probability that the

byte value for that row was observed at the offset for that column. The color mapping for

probabilities is chosen according the following scheme:

• Probability of 0 – Black

• Probability less than 0.00039 – Purple

• Probability between 0.00039 and 0.039 – Blue

• Probability between 0.039 and 0.5 – Green

• Probability between 0.5 and 1 - Red

• Probability of 1 – White

The blue range is the range of probabilities within one order of magnitude of

uniformly random. With 256 possible values, equally probable values occur with a

probability of 1/256 or 0.0039. While an exactly uniformly random probability is unlikely

to occur due to the approximations involved in sampling, values within an order of

 71

magnitude can be considered approximately equal to a uniform distribution. Therefore, a

range between 0.00039 and 0.39 was chosen as the range for approximately uniformly

random values. The color purple represents values that are over an order of magnitude

less likely to occur than values in the uniformly random range. The color green represents

values that are over an order of magnitude less likely to occur than values in the

uniformly random range. Values that are red occur more than 50% of the time, making

them good candidates for byte sequences that can be used to identify traffic using the

given protocol.

When interpreting the data, it is important to remember that this is a visualization

of the samples and that certain artifacts may show up in the visualization that are the

result of sampling. Not all packets are the same length, so toward the larger offset values

less data is available. This causes more black pixels to appear as the offset increases.

Additionally, there is a shift in the color towards the red end of the spectrum when there

is less available data since the values that are observed have higher observed probability.

There is also a shift towards red for protocols in which less data was captured for

analysis. When observing a uniformly random protocol, the expected result is for it to

begin as white with the first observation and move toward blue as more data is observed.

Therefore, it is inappropriate to compare colors across images because different amounts

of data were used to build each image.

These images give an overall impression of the distribution of content

probabilities based on offset into the first packet. For the purpose of finding identifying

byte sequences, it is useful to zoom in on the subset of offsets that have red pixels.

Illustrations 5 through 8 have been cropped and zoomed to show the first few bytes of

each original image.

 72

HTTP – Incoming

Illustration 5: Close up of positional probability in incoming HTTP packets

HTTP - Outgoing

Illustration 6: Close up of positional probability in outgoing HTTP packets

 73

HTTPS – Incoming

Illustration 7: Close up of positional probability in incoming HTTPS packets

HTTPS - Outgoing

Illustration 8: Close up of positional probability in outgoing HTTPS packets

 74

What each image shows is that while the length and specific offsets for red pixels

differ by protocol and direction, they all occur in clusters at the beginning of the each

observed packet.

Based on this distribution of high probability bytes, a byte sequence extractor was

created. It takes into account the following observations:

All observed protocols had a byte value that occurred with greater than 0.5 observed

probability at offset 0.

By definition, only one byte value can occur with greater than 0.5 probability at a given

offset.

The byte sequence extractor therefore uses the following algorithm:

• Start with a set of all connections and offset 0

• Loop

o For the given offset, find the byte value that has greater than 0.5

probability at the given offset. If it exists then record this value and

continue, otherwise terminate

o Take the subset of connections which have the given byte value at the

given offset, discarding the rest

o If at least two connections remain in the set then continue, otherwise

terminate

o With the given set of connections, calculate a new probability distribution

using only those connections

o Increment the offset by 1 and repeat the loop

 75

The result of this algorithm is to produce the most probable byte sequence that

starts with the most probable first byte. It terminates when there is not a clearly most

probably byte for the next byte in the sequence. By dividing the connections into

progressively smaller subsets, the algorithm can work efficiently with a small collection

of data rather than building a very large probability model of the entire space of byte

sequence probabilities. The limitation of this algorithm is that it found exactly one (or

zero) byte sequence per set of connections analyzed. It can also only identify contiguous

sequences that start with the first byte in the packet. In future research, the algorithm

could be extended to find multiple disconnected sequences.

Adversary Models

The HTTP and HTTPS model data was then used to construct a sample adversary

that classifies traffic as either HTTP or HTTPS. To create this adversary model, a 2-fold

cross-validation approach was used. All HTTP from all countries was pooled and the

HTTPS data was similarly pooled to create two master datasets. The packet capture data

from each test was broken into individual connections and all the connections for each

protocol were put into the master pools. The master pools were then randomly partitioned

into training and test data sets. The training data set was used to build an HTTP model

and an HTTPS model. These models were then used to classify the HTTP and HTTPS

data in the test dataset. For each connection in the test dataset, the predictions were

generated from the trained HTTP and HTTPS models and compared to the empirical data

from the connection. For each feature, a root-mean-square error (RMSE) was calculated

as a goodness-of-fit metric. A score was then calculated for the feature. If the RMSE for

HTTP was less than for HTTPS, a score of 1 was given. If the RMSE for HTTP was

greater than for HTTPS, a score of -1 was given. If the RMSE for both were the same, a

 76

score of 0 was given. All of the feature scores were then added to produce a final score

ranging from 6 to -6. If the final score was greater than 0, then the classification for this

connection was HTTP. If the final score was less than 0, then the classification for this

connection was HTTPS. If the final score was 0, then the classification for this

connection was Unknown. The classification was then compared to the known correct

answer. True positives, false positives, true negatives, false negatives, and unknown

classifications were recorded, as well as the overall accuracy in terms of correct and

incorrect classifications.

Adversary Model – Iteration 1

In order to best match the empirical distributions shown in the above graphs, the

following distributions functions were selected:

• Connection duration - Exponential

• Packet lengths - Multinomial

• Entropy of contents - Normal

• Flow rate in bytes per millisecond – Poisson

• Byte distribution of contents - Multinomial

Figure 19 through Figure 26 show the distribution of correct, incorrect, and

unknown classifications, both across features and as combined to form a final score.

 77

Accuracy of Duration Classifier

Figure 19: Accuracy of duration classifier for test adversary iteration 1

True Pos False Neg Unknown True Neg False Pos Unknown

Duration

Pe
rc

en
t

0
10

20
30

40
50

60
70

 78

Accuracy of Content Classifier

Figure 20: Accuracy of incoming content classifier for first iteration of test adversary

True Pos False Neg Unknown True Neg False Pos Unknown

Incoming Content

Pe
rc

en
t

0
10

20
30

40
50

60

 79

Figure 21: Accuracy of outgoing content classifier for first iteration of test adversary

True Pos False Neg Unknown True Neg False Pos Unknown

Outgoing Content
Pe

rc
en

t

0
20

40
60

80

 80

Accuracy of Entropy Classifier

Figure 22: Accuracy of incoming entropy classifier for first iteration of test adversary

Figure 22: Accuracy of incoming entropy classifier for first iteration of test adversary

True Pos False Neg Unknown True Neg False Pos Unknown

Incoming Entropy

Pe
rc

en
t

0
20

40
60

80

True Pos False Neg Unknown True Neg False Pos Unknown

Outgoing Entropy

Pe
rc

en
t

0
20

40
60

80

 81

Accuracy of Flow Classifier

Figure 23: Accuracy of incoming flow classifier for test adversary iteration 1

Figure 24: Accuracy of outgoing flow classifier for test adversary iteration 1

True Pos False Neg Unknown True Neg False Pos Unknown

Incoming Flow

Pe
rc

en
t

0
10

20
30

40
50

True Pos False Neg Unknown True Neg False Pos Unknown

Outgoing Flow

Pe
rc

en
t

0
10

20
30

40
50

60

 82

Accuracy of Length Classifier

Figure 25: Accuracy of incoming length classifier for test adversary iteration 1

Figure 25: Accuracy of incoming length classifier for test adversary iteration 1

True Pos False Neg Unknown True Neg False Pos Unknown

Incoming Length

Pe
rc

en
t

0
20

40
60

80
10

0

True Pos False Neg Unknown True Neg False Pos Unknown

Outgoing Length

Pe
rc

en
t

0
20

40
60

80

 83

Total Accuracy of Classifiers for Iteration 1

Figure 26: Total accuracy of classifiers for test adversary iteration 1

Adversary Models - Iteration 2

Given the poor performance of the adversary using the distribution functions from

Iteration 1, additional iterations were made to refine the models.

For the duration feature, 4 models were tested. The exponential function was

compared against a gamma. These two distributions, exponential and gamma, were fit to

the original data as well as to a “clean” variant in which all 0 values were removed, the

values were sorted, and the middle 95% of values were extracted while the 5% of high

and low outliers were discarded. The goal of this cleaning process was to achieve a better

fit by discarding values that might decrease the goodness-of-fit. The RMSE goodness-of-

fit scores for the four duration fitting tests are shown in Table 1.

Test Incoming Outgoing Total
exponential 2534 2829 5363
exponential-clean 4554 1569 6124
gamma 3358 2937 6295
gamma-clean 5059 1717 6776

True Pos False Neg Unknown True Neg False Pos Unknown

Total Score

Pe
rc

en
t

0
2

4
6

8
10

12
14

 84

Table 1: Comparison of RMSE sores for duration fitting tests

Based on these results, the original exponential using the original data has the

lowest total RMSE, making it the best overall fit. Looking at the graphs’ duration, it is

apparent that there are values that should clearly indicate the set from which the duration

was drawn. However, exponential distributions cluster most of their density at lower

values, and these values are very similar between the two sets. Therefore, an alternative

method for classification was tried, which tunes the adversary to reduce false positives

and false negatives. In this alternative method the value to be tested was used to index a

probability density value in the curve of each set’s fitted distribution function. The

higher-probability density value was considered to be the classification. When this

method was applied to the exponential curve fit to the data, it was discovered that HTTPS

almost always had higher probability densities than HTTP when testing against both

HTTP and HTTPS data. However, the probability densities were even higher when the

test data was in fact HTTPS. Therefore, an iterative algorithm was used to find the cutoff

density value that differentiated HTTP and HTTPS traffic such that the percentage of

errors was the same for both HTTP and HTTPS. An offset of 0.138 was found to be

optimal. A comparison of the original method and the new method is shown in Figures 27

and 28.

 85

Figure 27: Accuracy of duration classifier for test adversary iteration 1

Figure 28: Accuracy of duration classifier for test adversary iteration 2

As is evident from Figures 27 and 28, the new method has better accuracy in

terms of correctly reporting true positives and true negatives with greater probability than

false positives and false negatives. However, the new method does not allow for any tests

to have unknown results, leading to an increase in the number of false positives and false

negatives, which previously would be classified as unknown. Overall, the new approach

produces better results as it has an overall improved accuracy.

True Pos False Neg Unknown True Neg False Pos Unknown

Duration

P
e
rc
e
n
t

0
1
0

2
0

3
0

4
0

5
0

True Pos False Neg Unknown True Neg False Pos Unknown

Duration
Pe

rc
en

t

0
10

20
30

40
50

60
70

 86

Examining the other features revealed that some were not good discriminators

between HTTP and HTTPS. Packet length, content distribution, and packet timing were

sufficiently similar between HTTP and HTTPS that the accuracy of discriminators using

these features was low. An example of this is seen in Figures 29 and 30, displaying the

models for length. Though they are not identical, there is too much overlap to create an

accurate discriminator. This is not entirely surprising inasmuch as HTTP and HTTPS are

related protocols and so are likely to show some amount of similarity. Since HTTPS is

HTTP that has been encrypted using SSL, some of the characteristics of the underlying

HTTP protocol might show through in the HTTPS traffic.

Figure 29: Packet length distribution of incoming packets

 87

Figure 30: Packet length distribution of outgoing packets

Perhaps the most surprising result was the content distribution, as HTTP is

unencrypted and HTTPS is encrypted. Indeed, there are notable differences in the content

distribution when analyzing a large amount of data. However, the shapes of the

distribution are similar. This makes it difficult to determine, when looking at a small

amount of data such as a single connection, the distribution that most likely produced it.

This is seen in Figures 31 and 32.

 88

Figure 31: Distribution of byte values in the content of incoming packets

Figure 32: Distribution of byte values in the content of outgoing packets

Two features proved to be much better discriminators for HTTP-HTTPS: entropy

and byte sequence matching. Entropy is interesting because it is derived from the content

 89

distribution, but it also provided better accuracy than direct comparsion of the content

distribution. This is because, unlike a model based directly on the content distribution, it

does not consider the specific shape but only the relative flatness or unevenness of the

distribution. As is evident in the graphs above, the two protocols show a different amount

of flatness in their distributions. Figures 33 and 34 show the entropy models derived from

the data.

Figure 33: Comparison of models of incoming entropy for HTTP and HTTPS

 90

Figure 34: Comparison of models of outgoing entropy for HTTP and HTTPS

Although both incoming and outgoing models showed differences between the

protocols, the overlap on the incoming models was too large to provide good

discrimination. In contrast, the outgoing model shows little overlap between the two

distributions. This allowed for the creation of an accurate discriminator using only

outgoing entropy.

The other feature that worked well was byte sequence matching. Scoring was

somewhat different for the byte sequence matching inasmuch as this feature does not

represent a statistical distribution, but instead an existential quality that the connection

either does or does not possess. Each tested connection either did or did not contain the

specified byte sequence at the particular offset for the model. The scoring algorithm

therefore only produces values of 1 for a match and 0 for no match. In order to fit both

HTTP and HTTPS on one graph, the HTTPS results were multipled by -1, so they range

from 0 (no match) to -1 (match). The byte sequence matching produced no false positives

and no false negatives. All results were a true positive (HTTP match), a true negative

 91

(HTTPS match), or an unknown classification (no match). Figures 35 and 36 show the

results of the byte sequence matching.

Figure 35: Comparison of results of incoming byte sequence matching

Figure 36: Comparison of results of outgoing byte sequence matching

 92

Due to the lack of false positives and false negatives, the byte sequence matching

was an excellent discriminator. The only drawback is that it was not able to classify all of

the connections. Fortunately, it can be combined with the outgoing entropy to produce a

final adversary model. Figures 37 and 38 show the combined scores for an adversary

using outgoing entropy and both incoming and outgoing byte sequence matching.

Figure 37: HTTP matching scores for combined entropy and byte sequences

 93

Figure 38: HTTPS matching scores for combined entropy and byte sequences

As is evident from the graphs, the combined features produced very good

discrimination between HTTP and HTTPS. Figure 39 shows the final evaluation of this

adversary model:

 94

Figure 39: Total accuracy for test adversary iteration 2

The adversary has over 99% accuracy for correctly identifying both HTTP and

HTTPS.

This final adversary concludes the initial work in exploring feature-based

statistical modeling of filters. The HTTP and HTTPS samples collected during the field

study were used to create an adversary model that had 99% accuracy at distinguishing

between HTTP and HTTPS. During this process it was demonstrated that an important

part of the adversary modeling process was to choose those features which are good

discriminators for the specified set of protocols being examined.

True Pos False Neg Unknown True Neg False Pos Unknown

HTTP-HTTPS
P
er
ce
nt

0
20

40
60

80
10
0

 95

3.3 ADVERSARIES

After establishing through the HTTP-HTTPS proof of concept adversary what the

probability distributions for each feature should be, adversaries were created for use in

the evaluation of the Dust engine. As an outcome of the value-sensitive design reflection

process, the chosen protocols for encoding using Dust were HTTP, HTTPS, and RTSP.

Therefore, adversaries were created to differentiate traffic using these protocols. Six

adversaries were created using traffic for these protocols. First, three adversaries were

created as baselines. The baseline adversaries were HTTP-HTTP, HTTPS-HTTPS, and

RTSP-RTSP. With the baseline adversaries, the same protocol was used for both

categories. However, the same data was not always used for both categories. The datasets

were once again divided into two sets, which we can call X and Y. Different

combinations of data were used for training and testing. For instance, in one variant the

HTTP X dataset was using for training one side and the HTTP Y dataset was used for

training the other side. In other variations, the same dataset was used for training both

sides. The purpose of this set of adversaries is to establish a baseline for accuracy of the

classifier when no interesting signal exists. These baseline adversaries are evaluated in

the evaluation section. The second set of three adversaries differentiate between the

combinations of the three different protocols. The adversaries are as follows: HTTP-

HTTPS, HTTPS-RTSP, and HTTP-RTSP. These adversaries were similarly built in

several variations, using combinations of data from the X and Y subset for each protocol.

The second set of adversaries is also evaluated in the evaluation section. Additionally,

these three adversaries were used to evaluate Dust. In order to evaluate Dust, the same

adversaries were used to classify a mixture of traffic containing both traffic for a protocol

observed in the field and traffic encoded using Dust. For instance, the HTTP-HTTPS

adversary was used to classify a mixture DustHTTP traffic and HTTPS traffic. This

 96

evaluation is discussed in detail in the evaluation section. Finally, a new set of

adversaries was created specifically to classify Dust encoded traffic. Three adversaries of

this type were created: DustHTTP-HTTP, DustHTTPS-HTTPS, and DustRTSP-RTSP.

The purpose in creating these adversaries was to see if new adversaries trained on Dust

traffic could be created that could differentiate between Dust encoded traffic and the

traffic it was attempting to mimic. All of the different tests for these adversaries can be

seen in Appendix C, and the results are summarized in the evaluation section.

3.4 CONCLUSION

The work of model building started by looking at filtering hardware to determine

a semantic model detailing what features of network traffic are used by filters to classify

traffic. Using this set of features, a field study was done in 4 countries collecting network

traffic and analyzing the features of this traffic. A prototype adversary was then created

using the analyzed data to differentiate between HTTP and HTTPS traffic. This adversary

was tuned until it achieved a 99% accuracy in classification. The process of tuning helped

to decide on the best probability distribution to use for each feature in order to optimize

goodness-of-fit to the observed data as well as accuracy of the classifier. Following the

proof-of-concept adversary, new adversaries were created using the protocol selected in

the value-sensitive design reflection phase of the project. Adversaries were created to

differentiate traffic between these protocols. These adversaries were also used to evaluate

the performance of the Dust engine, as is discussed in the evaluation section.

The building of a collection of adversary models could be the work of a lifetime.

Every filtering device is a unique adversary that can be configured into numerous

different configurations. The research literature is also always developing new

hypothetical adversaries. The plan in this research project is to build a standard

 97

methodology for creating computational models of adversaries that can be compared to

each other and tested against various obfuscating encodings. Ideally, this work will serve

as the starting point for the creation of many adversary models by many different

researchers.

 98

4 Design of the Engine

4.1 INTRODUCTION

Having completed the value-sensitive design process and the creation of the

models, the next phase of research was to use those models to encode traffic and send it

through simulated adversaries. The reasoning was that simulated adversaries would allow

encoded traffic through that would be blocked if it were not encoded. Generating

encodings from filter models required the creation of a traffic-generation engine that

takes as input the traffic to be encoded as well as a statistical model of allowed traffic and

produces as output traffic that conforms to the allowed traffic model. This transformation

must be reversible so that the original traffic can be recovered after it has passed through

the filter. This engine is called Dust and constitutes the primary engineering contribution

of the dissertation and to the literature of unobservable communication. Unlike much of

the previous work in the field of unobservable communication, Dust is not a single

obfuscated protocol, but a polymorphic protocol engine capable of generating traffic to

match any protocol for which there is a model. In the spectrum of unobservable

communication approaches, it is most closely related to Format-Transforming Encryption

(FTE) [8]. However, unlike FTE, it does not require a formal grammar to be specified for

the protocol. Instead, statistical models are built by sampling observed traffic. Therefore,

Dust encodings can be built for undocumented and proprietary protocols for which no

formal specification exists. To distinguish the approach used in Dust from earlier network

protocol obfuscation techniques, the technique used in Dust is referred to as polymorphic

protocol shapeshifting. This is a new term, originating in this dissertation, to describe

approaches such as FTE and Dust that encode traffic in a way that is configurable to yield

a multitude of different encodings with the same software engine. Polymorphic protocol

shapeshifting advances the state of the field from earlier network protocol obfuscation

 99

techniques that encoded traffic according to a static configuration such that all traffic

generated by a particular obfuscation system would have similar characteristics. The Dust

software is open source and available for use by researchers and tool builders.

Information for downloading the software created in the course of this dissertation,

including Dust, is included in Appendix D. The name “Dust” was inspired by the system

described in section 2.3, “Design Concept 1”. In this system, the transport protocol

utilized conversations consisting of single UDP packets. The original idea was that this

approach would not give the filter enough information to classify the traffic. So the

shapeshifted packets would be difficult to block, much as it would be difficult to filter all

of the dust out of the air. This turned out to be a false assumption, as network filters

actually sometimes look at only the first packets on a conversation for purposes of

classifying the conversation. While the final architecture ended up being very different,

the name remained.

4.1.1 Use Case

The use case for Dust assumes that there is a network connected to the Internet

through a filtering device that selectively blocks some traffic while allowing other traffic

through. It is also assumed that there is an unfiltered, out-of-band channel of

communication available to users of this network. This is an assumption that is shared by

circumvention tools in general for, in order to use software tools to circumvent filtering,

users must first obtain these tools via some channel. Dust uses this channel not just to

distribute the software, but also to bootstrap a secure obfuscated connection.

4.1.2 Packet Filtering Techniques

The packet-filtering techniques currently in use by deployed filtering hardware

devices attempt to keep as little state as possible in order to be scalable. Filtering can

 100

happen either at the individual packet level by dropping blocked packets or at the stream

level by injecting reset packets to end the connection. For stream-level filtering it is

common to sample only the initial packets of the stream. Filters usually do not keep

persistent state about streams. Techniques for defeating filtering can therefore

concentrate on sending only packets that do not trigger blocking rules.

There are two general classifications of techniques for determining whether a

packet is blocked. Shallow packet inspection uses just the headers of the packet. This is

less expensive because the headers need to be examined anyway in order to route the

packet. DPI examines the packet contents as well as the headers. DPI used to be too

expensive to be practical, but it is now in widespread use by some filters. Shallow packet

inspection techniques are being used for marking packets in several ways: source IP and

port, destination IP and port, and packet length. DPI techniques are being used for

marking packets with byte sequence matching, particularly for connection headers and

handshakes of known protocols, and entropy of packet contents.

4.1.3 How Dust Circumvents Filters

Dust is an engine for generating Internet protocols used to send packets that

defeat the various traffic classification techniques currently in use. There is a client and a

server. In order for them to communicate, they must both be using compatible encodings.

Encodings can be thought of as a generalization of the specific communication protocols

used by previous network protocol obfuscation tools. Different encodings can be devised

that resemble the different types of network protocol obfuscation used by previous tools.

Features of the traffic can be randomized to create a “looks like nothing” protocol;

alternatively, features can be shaped according to a probability distribution derived from

observed traffic in order to create an encoding that mimics existing protocols.

 101

IP and port blacklists - Like most circumvention tools in use today, a

requirement is a proxy server with an IP address that has not been added to the filters

blacklist. Additionally, a port must be chosen for communication that has not been

blacklisted by the filter.

Packet length - Dust packets can have randomized lengths, shaped to a target

distribution. Different encodings can make the packet lengths look random or like an

existing protocol.

Connection headers and handshakes - Unlike typical encrypted protocols such

as SSH and SSL, Dust contains no plaintext handshake. All Dust traffic is encrypted,

starting with the first byte sent.

Byte sequence matching - Dust packets are encrypted, therefore the contents are

randomized and recurring byte sequences are removed. In order to circumvent filters that

require certain byte sequences to be present in the allowed traffic, Dust can also inject

byte sequences into the encrypted traffic.

Statistical properties of content - Encrypted content can be blocked by creating

a filtering rule that blocks packets with high entropy content. After encryption, Dust

content is shaped to have a specified statistical distribution. This allows the high entropy

encrypted content to be encoded as lower entropy, bypassing filters that flag high-entropy

connections for blocking.

4.2 HIGH-LEVEL PROTOCOL OVERVIEW

Dust is a polymorphic protocol engine capable of encoding and shaping network

traffic to conform to specified properties. It is composed of several layers that

successively transform the content to obtain filtering resistance. First, all identifying

information is erased from the original traffic. Then, the results are shaped to conform to

 102

the specified protocol model. This breaks the information flow between the hidden and

observable traffic, allowing for control of how the traffic is classified by the filter.

Application Layer

Every Dust communication is tied to a specific application. The first step in using

Dust is to define an application-specific format for communication. In the case of using

Dust as a Pluggable Transport, the application-specific format is simply a stream of

bytes. The further layers of the protocol are agnostic as to the contents of each message

and treat them as opaque byte strings. The application layer therefore has complete

freedom in choosing a format. Some useful functions are provided in the Dust library for

handling tasks such as cryptographic signing of messages. Any security features, such as

secrecy or authentication, must be added to this layer as the other layers only provide

obfuscation. In the case of Dust as a Pluggable Transport wrapping Tor traffic, the Tor

protocol handles secrecy and authentication.

Encryption Layer

The encryption phase takes as input a plaintext message and generates an

encrypted message. Unlike other encrypted protocols such as TLS, there is no plaintext

header. The output of this phase is uniformly random. Only two classes of content are

included in the output: encrypted data and single-use random bytes. The output of the

encryption phase includes a uniformly random header followed by one or more encrypted

messages. In the case of using Dust as a Pluggable Transport, the messages are chunks of

data from the data stream. This phase in encoding is agnostic as to the contents of the

plaintext message and so can be used for different applications.

The purpose of the encryption phase is to ensure a uniformly random distribution

of bytes as input to the shaping phase. The encryption phase disconnects information

 103

flow from the hidden traffic to the observed traffic. It ensures that the output of the

shaping phase is entirely dependent on the protocol model used and not on the original

message. The encryption is only used for providing better obfuscation and is not intended

to provide long-term secrecy. The encryption only needs to remain secure until the

message has passed through the filter and been received at the other side. Care has

nonetheless been taken to provide a secure encryption layer. However, certain features

that are desirable in encryption used for long-term secrecy are not implemented when

they are not appropriate for the use case. In particular, perfect forward secrecy (PFS) is

not implemented. The reason is that cryptographic protocols for achieving PFS require

bidirectional communication. Dust does not assume bidirectional communication and can

be used to send unidirectional messages. This makes Dust more flexible in terms of the

encodings that can be used as well as the underlying transports. While the current Dust

implementation uses TCP for communication, Dust-encoded messages could be sent

using arbitrary transports such as email messages or even using postal mail. Long-term

security features such as PFS can be optionally added at the application layer when

appropriate for the application. In the case of using Dust as a Pluggable Transport, all

secrecy is provided by the Tor protocol and so this would be the appropriate place to

include features such as PFS.

Shaping Layer

The shaping phase takes the uniformly random output from the encryption phase

and shapes it to match the target protocol model. Each significant property of the protocol

(for example, the distribution of characters in the contents or the packet length) is

represented in the protocol model as a probability distribution. The encrypted byte stream

is used as a psuedo-random number generator (PRNG) to sample from the probability

 104

distribution. Some properties (for example, packet timing) are not transferred losslessly

and so are not used to encode information. They are sampled using a separate secure

PRNG rather than the encrypted byte stream. These sampled values are then used to form

the generated traffic. For example, a model that includes the properties of the packet

contents, length, and timing generates a packet with a random contents, length, and

timing drawn from those probability distributions. Since the sampled values are drawn

from the probability distributions representing the significant properties, they conform

statistically to those distributions. From the filter's point of view, the observed traffic fits

the profile of the target protocol and therefore is classified as the target protocol. Since

the target protocol is chosen to be one that is allowed by the filter, the encoded traffic is

passed through the filter. When the traffic is received after it has passed through the filter,

it is decoded to recover the original hidden traffic. Properties that were sampled using an

independent PRNG (such as packet timing) are ignored. Properties that were sampled

using the encrypted byte stream as a PRNG are processed by a decoder function that is

the inverse of the encoder function. This reverse transformation recovers the encrypted

byte stream. The encrypted byte stream is then decrypted to reveal the original plaintext

message.

4.2.1 Application Layer

The first step in using Dust is to define an application-specific format for

communication. In the case of using Dust as a Pluggable Transport, the application layer

is simple. Pluggable Transports assume that there is one transport connection for each

application connection. Therefore, the application layer opens one TCP and keeps it open

until the client or server signals the end of connection. The application layer then acts as

a transparent proxy. Each chunk of bytes is read from the application TCP connection,

 105

encoded, and sent over the transport TCP connection. On the other side, they are read

from the transport TCP connection, decoded, and then sent over the application TCP

connection.

4.2.2 Encryption Layer

The encryption layer takes as input a plaintext message generated by the

application layer and generates an encrypted message. First, a key exchange must occur.

Then an encrypted message can be sent. For each message, the message to be delivered is

first encrypted and then a header is added specifying the necessary information to read

the message.

The Key Exchange

Protocols such as SSL and SSH initiate a public key exchange using a plaintext

handshake. They are therefore susceptible to protocol fingerprinting and filtering. Dust

also requires a public key exchange, but does not utilize a plaintext handshake. The Dust

handshake is a specific implementation of the ntor cryptographic key exchange protocol.

The original ntor paper did not specify implementation details such as ciphers to be used

or the wire protocol for exchanging messages. These are specified in the Dust encryption

protocol specification.

To complete a key exchange, the Dust server first creates a permanent public key.

The server then creates an invite, which contains the server's IP, port, public key, and the

parameters for the encoding to be used. The server operator then distributes the invite to

the client out-of-band. In the case of using Dust as a Pluggable Transport with the Tor

network, the invite is distributed to Tor bridge operators and uploaded to the BridgeDB

database of bridges addresses. Tor clients obtain the invite from the BridgeDB and

 106

configure the Pluggable Transport subsystem to use this invite, which then passes it to

the Dust client.

The client then generates an ephemeral public key for use only on the current

connection and then uses the IP and port information from the invite to connect to the

server. The client and server then exchange ephemeral public keys and the client provides

proof that it knows the server’s permanent public key. This provides secrecy for the

encryption key as well as defends against active attacks that probe random IP addresses

looking for servers. The encryption key is derived from the ephemeral public keys. At

this point, the client generates a random initialization vector and sends it to the server.

This IV along with the encryption key allows for a conversation consisting of one or

more encrypted messages to begin. In the case of using Dust as a Pluggable Transport,

the messages contain chunks of data from the data stream.

Sending Messages

Once the conversation has begun, messages can be sent. To send a message, the

encryption key and the initialization vector are used to encrypt first the message length

and then the message. This creates an entirely encrypted, random-looking sequence of

bytes. This completes the encryption layer encoding of the message. The message is then

sent onto the shaping layer to be encoded according to the probability distributions of the

model.

When the server receives an encrypted message that has been decoded by the

shaping layer, it decrypts the message length and uses it to extract a message of the

correct length. As bytes may be added to the end of the message to adjust its length to the

target protocol parameters, the length is necessary in order to know which data to keep

and which to discard. Once the message is decrypted, it is delivered to whatever backend

 107

service the server is providing. In the case of using Dust as a Pluggable Transport, the

decrypted message contains a chunk of data that is added to the data stream.

Randomness

A key consideration in the Dust protocol is that the only information in an

encrypted Dust message (before shaping) should effectively always be uniformly random

to an observer. There are therefore only two types of information that are included in an

encrypted Dust packet: encrypted bytes, which should appear random, and single-use

random bytes that are generated by a PRNG. The apparent randomness is essential to the

protocol's ability to avoid detection. Therefore, care should be taken to use a good

random number generator and to never reuse random bytes. For instance, the client's

ephemeral public key is intended for a single use and should never be reused. The

server's permanent public key is intended for multiple uses and so should never be sent

over the wire. Similarly, the initialization vector used in data packets should always be

randomly generated and should never be reused between messages.

Wire Protocol

The cryptographic protocol and wire protocol used to establish secure

communication using the uniformly random byte stream is fully documented in the

protocol specification section. For the purpose of understanding the shaping layer section,

the important consideration for the encryption layer is that the application layer data goes

into the encryption layer and results in a uniformly random encrypted byte stream for use

in the shaping later.

4.2.3 Shaping Layer

The shaping layer takes the uniformly random output from the encryption layer

and shapes it to match the target statistical model for each feature. Each statistical

 108

property of the traffic is represented in the statistical model as a probability distribution.

The encrypted byte stream is used as a psuedo-random number generator (PRNG) to

sample from the probability distribution. Some properties (for example, packet timing)

are not transferred losslessly and so are not used to encode information. They are

sampled using a separate secure PRNG rather than the encrypted byte stream. These

sampled values are then used to form the generated traffic.

The shaping later determines what traffic is actually sent over the network. It

takes as input the encrypted stream from the encryption layer. However, traffic sent over

the network is determined independently of whether or not there is actual data to send.

This is achieved by decoupling in the API. There is one API call to register new data to

be sent, and another API call to obtain the actual bytes that are sent over the network. The

latter always succeeds, regardless of whether the former has been called. Therefore, when

there are bytes to send they are used, and when there are no bytes to send random

padding is used.

Shaping Features

As long as there is a transport connection open between the client and the server,

Dust continues to send packets, whether or not there is any actual data to send. In order to

determine how many packets to send, a number is obtained from the Dust engine using

the flow model. Unlike some other protocol obfuscation tools, Dust does not model

packet inter-arrival times, but instead models the flow rate in terms of the number of

packets per second. Each time the Dust engine is queried for the number of packets to

send, the number of milliseconds elapsed since the last set of packets were sent is

supplied.

 109

Once a number of packets to send has been determined, the length of each packet

is determined next. The Dust engine is queried for a length for each packet, using the

packet length model. For each packet to be sent, bytes equal in number to the packet's

length are obtained from the engine. These bytes may or may not contain encrypted data.

If they do not contain encrypted data, then they contain random padding. Once a

sequence of bytes has been obtained by combining encrypted data with optional random

padding, this sequence of uniformly random bytes is encoded using reverse Huffman

encoding and the probability distribution supplied by the content model. The result is a

lower entropy byte sequence with a content distribution approximating that of the content

model.

To decode a received message, packet timing and length is ignored as these

characteristics may be altered during transmission. The bytes of the packet content are

decoded and decrypted. Bytes that contain padding are discarded. The remaining bytes

contain an encrypted message that is passed to the encryption layer for decryption and

then on to the application layer.

An important thing to note about the client/server communication process with

Dust is that the traffic sent over the network always follows the specified target

distribution for each property regardless of any other concerns. Servers continue to

communicate with clients even when decoding and decryption of the received messages

fails. The reason behind this is that the traffic sent over the network should never reveal

any information about the underlying messages being sent.

 110

4.3 PROTOCOL SPECIFICATIONS

4.3.1 Application Layer Protocol Specification

Overview

The application protocol allows for proxied connection byte streams to be

transmitted over transport connections. The use case for this protocol is when Dust is

used as a transparent proxy, as in when it is used as a Pluggable Transport.

Protocol

The client begins by either initiating a new session or continuing an existing

session. When creating a new session, the server returns the session ID for the new

session. A number of data messages are then sent that include the session ID and the

sequence number starting at 0. At any time, either side can send a close message to end

the session. For particularly long-lived sessions, the sequence numbers may be

insufficient for the number of messages to be sent. In this case, an “Extend Session

Request” message can be sent to reset the sequence number to zero and get a new session

ID which extends the current session.

Starting a new session

• Client request

o 1 byte - command code, 0x00 New Session Request

• Server response

o 1 byte - command code, 0x01 New Session Okay

o 32 bytes - new session ID

 111

Continuing an existing session

• Client request

o 1 byte - command code, 0x02 Continue Session Request

o 32 bytes - session ID to continue

• Server response

o 1 byte - command code, 0x03 Continue Session Okay

o 32 bytes - session ID to continue

Extending a session

• Client request

o 1 byte - command code, 0x04 Extend Session Request

o 32 bytes - session ID to extend

• Server response

o 1 byte - command code, 0x05 Extend Session Okay

o 32 bytes - new session ID

Closing a session

• Request (can be client or server)

o 1 byte - command code, 0x06 Close Session Request

o 32 bytes - session ID to close

• Response (other side, server or client)

o 1 byte - command code, 0x07 Close Session Okay

o 32 bytes - session ID to close

 112

Sending data

• 1 byte - command code, 0x0F Data

• 32 bytes - session ID

• 2 bytes - sequence number

• 2 bytes - length

• Variable – data

Errors

• 1 byte - error code, 0xF0 Too Many Sessions

• 1 byte - error code, 0xF1 Unknown Session ID

• 1 byte - error code, 0xF2 Connection Is Closed

• 1 byte - error code, 0xF3 Bad Sequence Number

4.3.2 Encryption Layer Protocol

Introduction

The encryption protocol consists of a secure key exchange protocol with server

identity verification and a wire protocol for transmitting the key exchange and messages

encrypted with the exchanged key.

Handshake Protocol

The handshake protocol is based on ntor. It has been modified from the original

ntor paper in order to be compatible with the needs of obfuscation. Each step of the ntor

protocol is discussed in the next section. In the following section, there is discussion of

which steps were changed for use in Dust and the security implications of these changes.

 113

The ntor Protocol, Step by Step

When 𝑩 is initialized as a server:

1. Set b ←$ {1, . . . , q − 1} and set B ← 𝑔!.

2. Set (b, B) as 𝐵’s static key pair.

3. Set 𝑐𝑒𝑟𝑡! = (𝐵, B) as 𝐵’s certificate.

When initializing the server, no messages are output. The server generates a key

pair [1,2] and the public key becomes the server’s certificate [3].

When 𝑨 is initialized as a client:

4. Obtain an authentic copy of 𝐵’s certificate.

When initializing the client, the server’s certificate is delivered out of band [4],

along with the other information necessary for contacting the server such as the server’s

IP address and port.

When 𝑨 receives the message (params, pid) = ((“new session”, ntor), 𝑩):

5. Verify that 𝐴 holds an authenticated certificate 𝑐𝑒𝑟𝑡! = (𝐵,B).

6. Obtain an unused ephemeral key pair (x, X ← 𝑔!); set session id 𝛹! = 𝐻!"#(𝑋).

7. Set 𝑀!"!"#
! [𝛹!] ← (𝑛𝑡𝑜𝑟,𝐵, 𝑥,𝑋).

8. Return session identifier 𝛹! and outgoing message 𝑚𝑠𝑔! ← (𝑛𝑡𝑜𝑟,𝐵,𝑋).

The “new session” message is conceptual and not actually output. It represents the

event in which the client seeks to initiate a new session with the server.

In order for the client to connect to the server, the client and the server both must

already be initialized [1,2,3] and the server’s certificate must have been transmitted out of

band to the client [4,5].

 114

The client generates an ephemeral key pair that is only used for this session [6]. A

hash of the public key of the client’s ephemeral keypair is used as the session identifier

[6]. The client stores session information in memory consisting of the ephemeral key pair

and the server’s public key, using the session identifier as the key for retrieving the

session information [7].

The output is a message generated by concatenating the static string “ntor”, the

server’s public key, and the client’s ephemeral public key [8]. This message requests

from the server that a new session be established.

When 𝑩 receives the message msg = (ntor, 𝑩, X):

9. Verify X ∈ 𝐺∗.

10. Obtain an unused ephemeral key pair (y, Y ← 𝑔!); set session id 𝛹! ← 𝐻!"#(𝑋).

11. Compute (𝑠𝑘!, 𝑠𝑘) = 𝐻(𝑋! ,𝑋! ,𝐵,𝑋,𝑌,𝑛𝑡𝑜𝑟).

12. Compute 𝑡! = 𝐻!"#(𝑠𝑘!,𝐵,𝑌,𝑋,𝑛𝑡𝑜𝑟, "𝑠𝑒𝑟𝑣𝑒𝑟").

13. Return session identifier 𝛹! and outgoing message 𝑚𝑠𝑔! ← (𝑛𝑡𝑜𝑟,𝑌, 𝑡!).

14. Complete 𝛹! by deleting 𝑦 and outputting (𝑠𝑘,∗, (𝑣! , 𝑣!)), where 𝑣! = (𝑋) and

𝑣! = (𝑌,𝐵).

When the server receives a message requesting a new session be established, it

first checks that the client’s ephemeral public key is a valid public key [9].

The server then generates an ephemeral key pair that is only used for this session

[10]. A hash of the public key of the server’s ephemeral keypair is used as the session

identifier [10].

The server then generates a shared key and a confirmation code. The shared key is

calculated by taking a hash of the following values: the key generated by an ECDH

between the client’s ephemeral public key and the server’s ephemeral private key, the key

 115

generated by an ECDH between the client’s ephemeral public key and the server’s static

private key, the client’s ephemeral public key, the server’s ephemeral public key, and the

string “ntor” [11]. The shared key is then used to calculate the confirmation code. The

confirmation code is calculated by taking an HMAC of the following values: the shared

key, the server’s identifier (for instance, the server’s IP address), the server’s public key,

the client’s public key, the string “ntor”, and the string “server” [12].

The server responds to the client’s request for a new session with a message

consisting of the concatenation of the following values: the string “ntor”, the server’s

ephemeral public key, and the confirmation code [13].

Once the confirmation code has been sent, the server forgets its ephemeral private

key (this is what makes it ephemeral) and records the session information in association

with the session identifier. The session information consists of the following values: the

shared key, the client’s ephemeral public key, the server’s ephemeral public key, and the

server’s static public key.

When 𝑨 receives the message 𝒎𝒔𝒈! ← (𝒏𝒕𝒐𝒓,𝒀, 𝒕𝑩) for session identifier 𝜳𝒂:

15. Verify session state 𝑀!"#"$
! [𝛹𝑎] exists.

16. Retrieve 𝐵, x, and X from 𝑀!"#"$
! [𝛹𝑎].

17. Verify Y ∈ 𝐺∗.

18. Compute (𝑠𝑘!, 𝑠𝑘) = 𝐻(𝑌! ,𝐵! ,𝐵,𝑋,𝑌,𝑛𝑡𝑜𝑟).

19. Verify 𝑡! = 𝐻!"#(𝑠𝑘!,𝐵,𝑌,𝑋,𝑛𝑡𝑜𝑟, "𝑠𝑒𝑟𝑣𝑒𝑟").

20. Complete 𝛹! by deleting 𝑀!"#"$
! [𝛹𝑎] and outputting (𝑠𝑘,𝐵, (𝑣! , 𝑣!)), where

𝑣! = (𝑋) and 𝑣! = (𝑌,𝐵).

When the client receives a response from the server, it first checks to see if it did

in fact request a session with that server [15]. If so, it retrieves the session information,

 116

which contains the server’s identifier (for instance, the server’s IP address), the client’s

ephemeral private key, and the client’s ephemeral public key [16].

The client next verifies that the server’s ephemeral public key is a valid public

key [17]. The client then generates a shared key and a confirmation code. The shared key

is calculated by taking a hash of the following values: the key generated by an ECDH

between the server’s ephemeral public key and the client’s ephemeral private key, the key

generated by an ECDH between the client’s ephemeral private key and the server’s static

public key, the client’s ephemeral public key, the server’s ephemeral public key, and the

string “ntor” [18]. The shared key should be identical to the one calculated on the server.

The shared key is then used to calculate the confirmation code. The confirmation code is

calculated by taking an HMAC of the following values: the shared key, the server’s

identifier (for instance, the server’s IP address), the server’s public key, the client’s

public key, the string “ntor”, and the string “server” [19]. The confirmation code

calculation is identical to the one used on the server and should have an identical result if

the shared key is, at it should be, also identical between the client and server.

The client then deletes the session state, including its ephemeral private key, and

stores a new session state consisting of the shared key, the server identifier, the client’s

ephemeral public key, the server’s ephemeral public key, and the server’s static public

key.

Once this last step has been completed, the client and server both have the same

shared key and they have verified by virtue of the confirmation code that the other side

also has the correct shared key. At this point, encrypted communication can occur using

the shared key as the encryption key.

 117

Problems with ntor

There are two messages that are exchanged between the client and server in the

ntor protocol. The out-of-band exchange of the server’s static public key is not counted

here. The first message is sent from the client to the server requesting a new session and

the second message is sent from the server to the client in response. The client’s message

contains the following: the string “ntor”, the server’s identifier, and the client’s

ephemeral public key. The server’s message contains the following: the string “ntor, the

server’s ephemeral public key, and a confirmation code.

In order for a handshake to work with obfuscating protocols, all output messages

must be free of information that can identify it as belonging to an obfuscating protocol. If

ntor is to be used in obfuscating protocols, then identifying characteristics such as

transmitting the string “ntor” at the beginning of the handshake are undesirable.

Specifically, the requirements set forth by the Dust project for wire protocols,

including handshake protocols, are that all bytes contained in output messages must be

either encrypted or random single-use values (nonces). Given this criteria, we can look at

the ntor messages and determine what changes are necessary to the protocol in order for

it to be acceptable.

The client’s message contains the following: the string “ntor”, the server’s

identifier, and the client’s ephemeral public key. The string “ntor” is neither encrypted

nor random and must be removed from the protocol. The server’s identifier could be

something non-random like an IP, or it could be a randomly generated string. However,

since the same server identifier is used for each new session initiated with the same

server, it is not single-use. Therefore, it does not meet the requirements and must be

removed. The client’s ephemeral public key is random because it is an Elligator public

key, and they are guaranteed to be uniformly random. Also, because it is ephemeral it is

 118

single use. Therefore, it meets the requirements and can remain. The confirmation code is

a special case. It is the result of a hash function and if a cryptographic hash function is

used then the result should be uniformly random bytes. However, if this hash can be

calculated by an observer, then it can be used to detect the presence of Dust traffic and so

could not be allowed. Examining how the hash function is calculated, two of the inputs

are the results of ECDH calculations. These calculations require private keys that are

never transmitted. Ephemeral keys are also used, which are single use. Therefore, the

confirmation code is a single-use value since the ephemeral keys used to generate it is not

used again. Since it cannot be calculated by an observer, it can be considered a random

single-use value and is acceptable.

The modified version of the ntor protocol that fits the requirements therefore

consists of a client message containing just the client’s ephemeral public key, followed

by a server response containing the server’s ephemeral public key and the confirmation

code. One can assume that the parts removed from the ntor protocol were added for a

reason and that removing them could have some impact on the security of the modified

ntor protocol. While the security arguments made in the ntor paper do not reference these

parts of the protocol, the authors may have had some other attacks in mind that were not

documented in the paper. Fortunately, these changes to the Dust implementation of ntor

were discussed with one of ntor’s authors, Ian Goldberg, and it was decided that they do

not break the security of ntor. There is, however, one item of concern, which is that a

server identity value (which is passed out of band) is used in some of the calculations for

ntor. However, there are attacks that are possible if the server identity is not verified. In

the use case in which Dust is used as a Pluggable Transport, the server identity is passed

in from the Pluggable Transport subsystem and Dust has no way of verifying it. It is thus

the responsibility of the Pluggable Transport subsystem to verify the validity of the

 119

server identity. Unfortunately, currently no such verification is done. This represents a

vulnerability for all Pluggable Transports that use variants of ntor requiring a verified

server identity. While outside the scope of this project to fix, this is something that should

be addressed in the Tor architecture in order to prevent known attacks.

Dust Handshake

Initializing a server

• The server generates a static ECDH keypair using Curve25519 that becomes the

server’s certificate.

Initializing a client

• The client obtains a copy of the server’s certificate out of band, along with the

server’s IP and port

Creating a new session

• Verify that the client has the certificate for the server

• Create an ephemeral Curve25519 keypair, associating it with the given server

• Encrypt the ephemeral public key with Elligator

• Send the encrypted ephemeral public key to the server

 120

When the server receives a client request for a new session

• Obtain the client’s encrypted ephemeral public key from the message.

• Decrypt the client’s encrypted ephemeral public key with Elligator to get the

client’s Curve25519 ephemeral public key

• Create an ephemeral Curve25519 keypair

• Create a shared key (see below)

• Create a server confirmation code using the shared key (see below)

• Encrypt the ephemeral public key with Elligator

• Send the encrypted ephemeral public key and server confirmation code to the

client

• Delete the ephemeral private key

• Store the shared key, associated with the client

When the client receives a server response for a new session

• Obtain the server’s encrypted ephemeral public key and the server confirmation

code from the message.

• Decrypt the server’s encrypted ephemeral public key with Elligator to get the

server’s ephemeral Curve25519 public key

• Create a shared key (see below)

• Create a client confirmation code using the shared key (see below)

• Verify that the client confirmation code and server confirmation code are identical

• Delete the ephemeral private key

• Store the shared key, associated with the server

 121

Creating a shared key

• On the server, hash with Skein-256-256 the following:

o 32 bytes - ECDH(server’s ephemeral private key, client’s ephemeral

public key)

o 32 bytes - ECDH(server’s static private key, client’s ephemeral public

key)

o 7 or 19 bytes - server identifier (see below)

o 32 bytes - client’s ephemeral public key

o 32 bytes - server’s ephemeral public key

o 4 bytes - “ntor”

• On the client, hash with Skein-256-256 the following:

o 32 bytes - ECDH(client’s ephemeral private key, server’s ephemeral

public key)

o 32 bytes - ECDH(client’s ephemeral private key, server’s static public

key)

o 7 or 10 bytes - server identifier (see below)

o 32 bytes - client’s ephemeral public key

o 32 bytes - server’s ephemeral public key

o 4 bytes - “ntor”

 122

Creating a confirmation code

• Identical on both client and server, HMAC with Skein-256-256 and the shared

key the following:

o 7 or 19 bytes - server identifier (see below)

o 32 bytes - server’s ephemeral public key

o 32 bytes - client’s ephemeral public key

o 4 bytes - “ntor”

o 6 bytes - “server”

Creating a server identifier

• For an IPv4 address:

o 1 byte - flags (see below)

o 4 bytes - IP Address

o 2 bytes - port

• For an IPv6 address:

o 1 byte - flags (see below)

o 16 bytes - IP Address

o 2 bytes - port

 123

Creating server identifier flags

• 0 - 0 for IPv4, 1 for IPv6

• 1 - 0 for TCP, 1 for UDP

• 2-7 - Reserved, set to 0

Wire Protocol

The following reduces the complexity of the handshake protocol description into just

what is actually output:

• Client Request to Server

o 32 bytes - client’s ephemeral public key

• Server Response to Client

o 32 bytes - server’s ephemeral public key

o 32 bytes - confirmation code

Message Protocol

The final result of the handshake protocol is that the client and server both have

an identical shared key, which can be used for encrypting messages. Once the handshake

is complete, message transmission can commence. For this phase of communication, the

encryption protocol provides semantics for message transmission.

The message transmission protocol begins with a header that consists of a random

initialization vector (IV). After the header, any number of records can be sent until such

point as the session is ended. The record format consists of an encrypted length followed

by an encrypted payload of the specified length. The payload contains a header, data, and

a verification code. As the client and server use the same shared key, the message

protocol is identical for both client and server.

 124

Message Protocol Step-by-step

Sending a message with data

• If this is the first message, send the header (see below)

• Generate flags (see below)

• Generate a verification code for the data (see below)

• Create a payload by concatenating the following:

o 1 byte - flags

o Variable - data

o 32 bytes - verification code

• Encrypt the payload with the shared key to get the encrypted payload

• Obtain the length of the payload and encode it as a 2-byte value in network byte

order

• Encrypt the length with the shared key to get the encrypted length

• Create a record by concatenating the following:

o 2 bytes - encrypted length

o Variable - encrypted payload

• Deliver the message

 125

Sending a message without data

• If this is the first message, send the header (see below)

• Generate flags (see below)

• Generate randomly sized blank data

• A random number of 0-valued bytes

• Generate a blank verification code for the data

o 32 0-valued bytes

• Create a payload by concatenating the following:

o 1 byte - flags

o Variable - blank data

o 32 bytes - blank verification code

• Encrypt the payload with the shared key to get the encrypted payload

• Obtain the length of the payload and encode it as a 2-byte value in network byte

order

• Encrypt the length with the shared key to get the encrypted length

• Create a record by concatenating the following:

o 2 bytes - encrypted length

o Variable - encrypted payload

• Deliver the message

Sending the header

• Generate a random 32-byte initialization vector (IV)

• Deliver the IV

 126

Generate flags

• 0 - 0 for no data, 1 for data included

• 1-7 - Reserved, set to 0

Generate a verification code for the data

• HMAC with the shared key the following:

o 2 bytes - unencrypted length

o 1 byte - flags

o Variable - data

Wire Protocol

The following reduces the complexity of the message protocol description into

just what messages are actually output. The client and server side use identical wire

protocols.

• 32 bytes - IV

• Repeating

o 2 bytes - encrypted length

o Variable - encrypted payload

o If data

§ 1 byte - flags

§ Variable - data

§ 32 bytes - verification code

o otherwise

§ 1 byte - flags

§ Variable - blank data

§ 32 bytes - blank verification code

 127

4.4 CONCLUSION

The Dust engine was implemented using three layers: the application layer, the

encryption layer, and the shaping later. The application layer for Dust as a Pluggable

Transport is a single set of frames including chunks of a byte stream to be forwarded.

The encryption layer uses a variant of the ntor protocol to establish an encrypted

communication channel that is secure against passive observers and active probing

attacks. The shaping layer encodes uniformly random encrypted data to follow a target

probability distribution provided by the model.

 128

5. Evaluation

5.1 EVALUATION METHODOLOGY

The evaluation of the overall research project depended on the results of

evaluating each phase of research. The evaluation answered the following questions to

determine the success of the project:

• How accurate are the models of filters?

• How effective and efficient is the circumvention engine?

• How effective and efficient are the models?

The models were evaluated using 2-fold cross-validation of goodness-of-fit. This

determined the goodness of fit of the models to the data used to build them. The

effectiveness of the circumvention engine was tested against a simulated adversary

constructed by using the filter models as binary classifiers. Normal traffic as well as

traffic generated by the engine was classified into blocked or allowed categories by the

simulated adversary. The accuracy of the simulated adversary was used to determine how

accurate the filter is at classifying normal traffic as well as encoded traffic. Efficiency of

the circumvention engine was measured by calculating the overhead of Dust encodings as

determined by the size of the original message compared to the amount of actual network

traffic sent. Together these evaluations answer the overall research question of the

project, which is how well the proposed method of circumventing can restore access to

credible and relevant information that was lost due to Internet filtering.

The goal of evaluation is to measure the effectiveness and efficiency of the Dust

engine. To evaluate effectiveness, the engine was tested against simulated adversaries.

The chosen protocols for encoding using Dust were HTTP, HTTPS, and RTSP.

Therefore, adversaries were created to differentiate traffic using these protocols. Six

 129

adversaries were created using traffic for these protocols. First, three adversaries were

created as baselines. The baseline adversaries were HTTP-HTTP, HTTPS-HTTPS, and

RTSP-RTSP. With the baseline adversaries, the same protocol was used for both

categories. However, the same data was not always used for both categories. The datasets

were once again divided into two sets, which we can call X and Y. Different

combinations of data were used for training and testing. For instance, in one variant the

HTTP X dataset was used for training one side and the HTTP Y dataset was used for

training the other side. In other variations, the same dataset was used for both sides. The

purpose of this set of adversaries is to establish a baseline for accuracy of the classifier

when no interesting signal exists. The accuracy of the baseline adversaries is discussed

below. The second set of three adversaries differentiated between the combinations of the

three different protocols. The adversaries are as follows: HTTP-HTTPS, HTTPS-RTSP,

and HTTP-RTSP. These adversaries were similarly built in several variations using

combinations of data from the X and Y subset for each protocol. The accuracy of the

second set of adversaries is also discussed below. Additionally, these three adversaries

were also used to evaluate Dust. The same adversaries were used to classify traffic, but

one set of data used during testing was substituted for Dust encoded data. For instance,

the HTTP-HTTPS adversary was used to classify a mixture of DustHTTP traffic and

HTTPS traffic. This evaluation is discussed in detail in the evaluation section. Finally, a

new set of adversaries was created specifically to classify Dust-encoded traffic. Three

adversaries were created of this type: DustHTTP-HTTP, DustHTTPS-HTTPS, and

DustRTSP-RTSP. The purpose in creating these adversaries was to see if new adversaries

trained on Dust traffic could be created that could differentiate between Dust-encoded

traffic and the traffic it was attempting to mimic. All of the different tests for these

adversaries can be seen in Appendix C, and the results are summarized below.

 130

The encodings were evaluated by looking at the performance of the adversaries

with and without encoding. The metrics used to evaluate were goodness of fit and overall

accuracy of prediction. Root Mean Squared Error (RMSE) was used as the goodness-of-

fit metric. Accuracy was calculated by dividing the number of true positives and true

negatives by the total number of predictions. So false positives and false negatives

counted against accuracy, as did connections that the adversary was not able to classify.

A successful encoding is one that reduces the filter's precision when moving from normal

traffic to encoded traffic.

Efficiency was measured by calculating the overhead of the Dust encodings. The

overhead was determined by the size of the original message compared to the amount of

actual network traffic sent. There is always some overhead when obfuscating traffic.

Many obfuscated protocols have a fixed amount of overhead. For instance, protocols such

as obfs2 [20] have a header that must be sent before any data. After the header, data is

merely encrypted and so there is no additional overhead. Other protocols have variable,

but usually low, overhead. For instance, FTE is reported to have "as little as 16%

bandwidth overhead compared to standard SSH tunnels" [8]. Dust is different in that the

original traffic and encoded traffic are disconnected. If the target protocol has a

bandwidth usage of 1 Mbps then the encode traffic uses 1 Mbps regardless of the

bandwidth of the original traffic. In fact, a Dust conversation can be initiated that has no

source traffic whatsoever and uses a PRNG to generate traffic. This configuration is used

in some of the testing tools developed for examining the characteristics of filtering

hardware. While the worst-case scenario for Dust is therefore unbounded overhead, the

average case is better. In all tests, the bandwidth was adequate to perform the tests over a

consumer grade home Internet connection.

 131

5.2 RESULTS

Figures 40 through 47 show the goodness of fit for the simulated adversaries.

There is a chart for each feature for both incoming and outgoing directions. For each

protocol, the data was divided into two sets X and Y. Each of these two sets was used to

train a different protocol model and then tested against each of the two sets. On the x-

axis, for each protocol results first for the XX (train using X and then test against X) and

YY trials are shown, followed by the XY and YX trials. On the left side are the original

protocols observed in the field: HTTP, HTTPS, and RTSP. On the right side of the graph

are the dust encodings seeking to mimic those protocols: DustHTTP, DustHTTPS, and

DustRTSP. The y-axis shows the root mean squared error (RMSE) between the

predictions of the model and the test data.

Figure 40: RMSE of predictive model for incoming content

0	
500	
1000	
1500	
2000	
2500	
3000	
3500	
4000	
4500	
5000	

IncomingContent	

IncomingContent	

 132

For the incoming content model shown in Figure 40, RMSE scores show a

somewhat better fit for HTTP and HTTPS than for DustHTTP and DustHTTPS. RTSP

has an especially good fit and DustRTSP has an especially bad fit. The results are

consistent across XX, YY, XY, and YX trials.

Figure 41: RMSE of predictive model for outgoing content

For the outgoing content model shown in Figure 41, RMSE scores for HTTP,

HTTPS, and RTSP are so much better than for DustHTTP, DustHTTPS, and DustRTSP

that they barely show up on the graph. The DustHTTP model has an order of magnitude

worse fit than the DustHTTPS and DustRTSP models. The results are consistent across

XX, YY, XY, and YX trials.

0	

200000	

400000	

600000	

800000	

1000000	

1200000	

1400000	

1600000	

OutgoingContent	

OutgoingContent	

 133

Figure 42: RMSE of predictive model for incoming entropy

For the incoming entropy model shown in Figure 42, RMSE scores for HTTP,

HTTPS, and RTSP are two orders of magnitude better than for DustHTTP, DustHTTPS,

and DustRTSP. The DustHTTPS model has a significantly worse fit than the DustHTTP

and DustRTSP models. The results are mostly consistent across XX, YY, XY, and YX

trials, which the exception of DustHTTPS. This model shows sensitivity to the training

and testing sets. It does much worse when both trained and tested with set X and much

better when both trained and tested with set Y. The XY and YX trails average out the

difference and show consistent results.

0	
100	
200	
300	
400	
500	
600	
700	

IncomingEntropy	

IncomingEntropy	

 134

Figure 43: RMSE of predictive model for outgoing entropy

For the outgoing entropy model shown in Figure 43, RMSE scores for HTTP,

HTTPS, and RTSP are three orders of magnitude better than for DustHTTP and

DustHTTPS, and five orders of magnitude better than DustRTSP. The results are

consistent across XX, YY, XY, and YX trials.

0	
2000	
4000	
6000	
8000	
10000	
12000	
14000	
16000	
18000	
20000	

H
TT
P	

H
TT
PS
	

RT
SP
	

H
TT
P	

H
TT
PS
	

RT
SP
	

Du
st
H
TT
P	

Du
st
H
TT
PS
	

Du
st
RT
SP
	

Du
st
H
TT
P	

Du
st
H
TT
PS
	

Du
st
RT
SP
	

OutgoingEntropy	

OutgoingEntropy	

 135

Figure 44: RMSE of predictive model for incoming packet length

For the incoming packet length model shown in Figure 44, HTTP, HTTPS, RTSP,

DustHTTP, and DustHTTPS all show good fits. DustRTSP shows a three orders of

magnitude worse fit. The results are consistent across XX, YY, XY, and YX trials.

0	

200	

400	

600	

800	

1000	

1200	

IncomingLength	

IncomingLength	

 136

Figure 45: RMSE of predictive model for outgoing packet length

For the outgoing packet-length model shown in Figure 45, HTTP, HTTPS, and

RTSP show an exceedingly good fit. DustHTTP, DustHTTPS, and DustRTSP show one

to two orders of magnitude worse fit. The results vary based on the training and testing

datasets. For these three protocols, they show consistently better fits when trained on set

X and tested on set X than when trained and testing on set Y. However, DustHTTPS and

DustRTSP show consistent results when different datasets are used for training and

testing. Only DustHTTP shows inconsistent results when using different training and

testing datasets, with three times better fit on the YX trail than on the XY trail.

0	
20	
40	
60	
80	
100	
120	
140	

OutgoingLength	

OutgoingLength	

 137

Figure 46: RMSE of predictive model for incoming packet flow

For the incoming packet flow model shown in Figure 46, HTTP, HTTPS, RTSP,

DustHTTP, and DustHTTPS all show good fits. DustRTSP shows a two orders of

magnitude worse fit. The results are consistent across XX, YY, XY, and YX trials.

0	

200	

400	

600	

800	

1000	

1200	

IncomingFlow	

IncomingFlow	

 138

Figure 47: RMSE of predictive model for outgoing packet flow

For the outgoing packet flow model shown in Figure 47, HTTP and HTTPS show

good fits. RTSP, DustHTTP, DustHTTPS, and DustRTSP show a two orders of

magnitude worse fit. Of these, RTSP is the best fit and DustRTSP is the worst fit. The

results are mostly consistent across XX, YY, XY, and YX trials. RTSP shows a

sensitivity to the training and testing datasets, with the error doubling for the YY and XY

trails compared to the XX and YX trails.

Overall, the error varies widely between features, directions, and protocols.

However, it generally does not vary much when switching between the dataset used for

training and the dataset used for testing. The goodness-of-fit testing therefore shows that

the performance of the model is not sensitively dependent on the data set used to train it

for most features and protocols. Figures 48 and 49 explore changes in error more closely.

0	

1000	

2000	

3000	

4000	

5000	

6000	

OutgoingFlow	

OutgoingFlow	

 139

Figure 48: Change in error per feature between XX/YY and XY/YX trials

Figure 48 shows the average change in error per feature that is introduced by

switching from XX/YY trials to XY/YX trials. The change in error varies by feature, but

is generally low. The change in error is highest for entropy and lowest for content. The

change in error is also lower for incoming models than for outgoing models. The average

change in error across all features is less than one order of magnitude.

0	

5	

10	

15	

20	

25	

Change	in	Error	

Change	in	Error	

 140

Figure 49: Change in error per protocol between XX/YY and XY/YX trials

Figure 49 shows the change in error per protocol that is introduced by switching

from XX/YY trials to XY/YX trials. The change in error varies by protocol, but is

generally low. RTSP and the various Dust protocols are more sensitive to changes and

training data. This may be because there is more data available for training HTTP and

HTTPS models.

The purpose of Figures 48 and 49 is to show that the results are consistent

independent of which dataset is using for training and which is used for testing. While the

datasets used to change the RMSE scores for the models, the effect is small. Figures 50

through 53 show the average error across all trials.

0	
2	
4	
6	
8	
10	
12	
14	
16	

Change	in	Error	

Change	in	Error	

 141

Figure 50: Average error per feature

Figure 50 shows the average error for each feature in both incoming and outgoing

directions. The graph shows that by far the most error is incurred on outgoing content.

0	
50000	
100000	
150000	
200000	
250000	
300000	
350000	
400000	
450000	

Average	Error	

Average	Error	

 142

Figure 51: Average error per protocol

Figure 51 shows the average error for each protocol. The graph shows that the

average error for the Dust suite of protocols is significantly higher than for the protocols

observed in the field. DustHTTP is an order of magnitude worse fit than DustHTTPS and

DustRTSP.

Figures 52 and 53 explore more deeply the difference between the goodness of fit

for HTTP, HTTPS, and RTSP compared to DustHTTP, DustHTTPS, and DustRTSP.

0	
20000	
40000	
60000	
80000	
100000	
120000	
140000	
160000	
180000	
200000	

Average	Error	

Average	Error	

 143

Figure 52: Change in error per feature between original protocol and Dust emulation

Figure 52 shows the change in error that occurs when switching from a protocol

such as HTTP to DustHTTP. The graph shows that the most additional error is incurred

in the outgoing content feature.

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

800000	

Change	in	Error	

Change	in	Error	

 144

Figure 53: Change in error per feature between original protocol and Dust emulation

Figure 53 shows the change in error that occurs when switching from a protocol

such as HTTP to DustHTTP. DustHTTP is the least effective, with an order of magnitude

more change in error than DustHTTPS and DustRTSP.

Simulated Adversaries

The full results from doing simulated adversary tests are presented in Appendix

B. In these tests, data was again divided into two sets X and Y for each protocol. One set

was chosen for training and another for testing. Simulated adversaries use two protocols

A and B. For each protocol, there is a training set and a testing set. The data from the

testing sets for each protocol were mixed together and then the models derived from the

training data for each protocol were used to create a binary classifier that predicted which

testing set the data was drawn from, A or B. This classification test could have three

possible outputs: positive, negative, or unknown. When compared with the correct

answer there were six possible results: true positive, false negative, unknown (but

0	
20000	
40000	
60000	
80000	
100000	
120000	
140000	
160000	
180000	
200000	

HTTP	 HTTPS	 RTSP	

Change	in	Error	

Change	in	Error	

 145

actually from A), false positive, true negative, and unknown (but actually from B). A

total accuracy score was calculated by comparing the number of correct answers (true

positives and true negatives) with the number of incorrect answers (false positives and

false negatives). These total accuracy scores were then classified into categories. Scores

where the total accuracy was greater than 90% and the number of unknowns was less

than 50% for both unknown categories were considered Excellent. Scores with a total

accuracy greater than 50% with any number of unknowns were considered Good. Scores

with a total accuracy less than 50% with any number of unknowns were considered Bad.

Scores where there were more incorrect predictions than correct predictions for either

protocol A or protocol B were considered Terrible.

When a simulated adversary had the same protocol for A and B, regardless of

dataset, across all features the total accuracy was Terrible. This is the expected result and

just serves as a simple sanity check and baseline.

For the HTTP-HTTPS adversary, incoming content was Terrible, outgoing

content was Excellent, incoming entropy was Terrible, outgoing entropy was Good, flow

in both directions was Terrible, incoming length was Bad, and outgoing length was Good.

For the HTTP-RTSP adversary, content accuracy in both directions was Terrible,

incoming entropy was Good, outgoing entropy was Excellent, flow in both directions was

Terrible, and length in both directions was Good. These results showed up consistently

across X/Y datasets.

For the HTTPS-RTSP adversary, content in both directions was Terrible, entropy

in both directions as Good, flow in both directions was Terrible, and length in both

directions was Excellent. These results showed up consistently across X/Y datasets.

Overall, the results showed that the results from content were as good as the

results from entropy even though entropy is derived from content, with the exception of

 146

the outgoing direction on the HTTP-HTTPS classifier, where entropy was still Good but

content was Excellent. Additionally, flow was not a good feature to use for classification,

whereas length was a good feature to use.

For further discussion, only the features that were Good or Excellent classifiers

are discussed, as they are of primary interest, while flow is not discussed further due to its

overall poor performance as a classifier. The full breakdown of all results is available in

Appendix C.

In the second set of tests, the same adversaries were used, but Dust traffic was

substituted for one side. For instance, the HTTP-HTTPS adversary was used to classify a

mix of DustHTTP and HTTPS traffic, and separately to classify a mix of HTTP and

DustHTTPS traffic. This test was done for all three of the adversaries, substituting Dust

traffic for each side separately. Different variations of X and Y datasets were tested.

Overall, Dust performed well against the adversaries. The average accuracy for all

features was 73% and for all features excepting flow it is even better at 76%.

Finally, a set of tests were constructed in which new adversaries were developed

that specifically targeted Dust. For each protocol, an adversary was trained on that

protocol as well as the Dust encoding for that protocol. For instance, for HTTP an

adversary was developed that was trained on DustHTTP and HTTP data. The same sort

of tests were run using the adversary, having it classify a mixture of DustHTTP and

HTTP traffic. The purpose of this test was to show the effect of an iterated attacker that is

specifically targeting Dust traffic for a particular encoding.

For the DustHTTP-HTTP adversary, content was Terrible, entropy was Excellent,

incoming length was either Bad or Terrible depending on the datasets, and outgoing

length was Excellent.

 147

For the DustHTTPS-HTTPS adversary, incoming content was Bad, outgoing

content was Terrible, incoming entropy was Good, outgoing entropy was Excellent,

incoming length was Terrible, and outgoing length was Excellent.

For the DustRTSP-RTSP adversary, incoming content was Terrible, outgoing

content was Excellent, entropy was Good, and length was Terrible.

Overall, the adversaries trained on Dust traffic performed well. For HTTP and

HTTPS, entropy and length were the best distinguishing features. For RTSP, content and

entropy were the best features to use. These tests show that while the current Dust engine

and models are good at circumventing filters, they currently do not achieve perfect results

and there is therefore room for improvement on the engineering of the Dust engine and

the development of better models.

5.3 CONCLUSION

Overall, the Dust engine performed adequately. The simulated adversaries

classified Dust traffic favorably an average of 73% of the time across all features and

76% of the time across all features except for flow. However, new adversaries trained

specifically on Dust traffic were effective at distinguishing Dust traffic from the traffic

that it mimicked. In one sense, this validates the method of building and training

simulated adversaries. In another sense, this points to areas where the Dust engine and the

models used can be improved. One particular area of improvement is the entropy reducer.

Entropy reduction is accomplished by means of shaping the content distribution. This is

accomplished using a reverse Huffman encoder. Unfortunately, Huffman encoding is not

a perfect choice for entropy reduction. It quantizes probabilities to powers of two. The

probability of each symbol can therefore only be ½, ¼, etc. This works well for

distributions that approximate this sort of quantization. However, if the probabilities are

 148

very far from powers of two then the quantization can cause artifacts that adversely affect

the entropy of the results. As Huffman encoding is being used specifically for achieving a

target entropy, this is not optimal. A possible solution is to use a non-quantizing

compression algorithm such as arithmetic coding instead.

 149

6. Conclusion

6.1 SUMMARY OF RESULTS

The preliminary research began with a study of filtering hardware devices. The

results of the hardware study shows that filtering technology in the field is not nearly as

advanced as in the computer science literature. The primary methods of classification are

based on shallow examination of the packet headers with the primary use of Deep Packet

Inspection being matching of byte sequences on a per-packet basis. Entropy was also

used by one device to detect and block encrypted protocols. These findings suggest that

the priority for encodings should be robust and efficient protection against basic attacks

rather than defense against advanced attacks that do not occur in practice.

The second phase of preliminary research was a field study in 4 countries. The

packet capture data gathered in this study was used to build a proof of concept HTTP-

HTTPS classifier. The results of this research determined that a multinomial distribution

would be used for content and packet length, a normal distribution for entropy. An

adversary was tuned that could achieve 99% accuracy in classification between HTTP

and HTTPS traffic. It was also shown that byte sequence matching is an effective feature

for classification.

A value-sensitive design process was then carried out to determine what specific

circumvention tool should be created. There were six different design concepts that were

explored. What started out as a way to access Twitter eventually ended up as a Dust

Pluggable Transport for Tor to enable the Courier news reader for Android to be used to

access news feeds. This design process also resulted in the selection of three protocols to

be used as targets for encoding: HTTP, HTTPS, and RTSP.

The Dust engine was implemented using three layers: the application layer, the

encryption layer, and the shaping later. The application layer for Dust as a Pluggable

 150

Transport is a single set of frames including chunks of a byte stream to be forwarded.

The encryption layer uses a variant of the ntor protocol to establish an encrypted

communication channel that is secure against passive observers and active probing

attacks. The shaping layer encodes uniformly random encrypted data to follow a target

probability distribution provided by the model.

Evaluation of the Dust engine used simulated adversaries that distinguished

between HTTP, HTTPS, and RTSP traffic. Overall, the Dust encodings were classified

favorably 76% of the time for the features that were selected. A second iteration of

adversaries was also done in which they were trained to detect Dust encoded traffic. This

second set of adversaries was effective at blocking Dust traffic, leading to interesting

avenues for future research in producing more effective encodings.

In revisiting the research questions for the projects, the following answers have

been found:

What properties of Internet traffic are important for filtering as it occurs in

practice today? The properties of Internet traffic that are important for filtering were

identified in the hardware study and later used in the model building and engine design

chapter. The important features include packet length, entropy, and byte sequences.

Do the particular filtering methods that have been implemented in deployed

hardware have a set of characteristics that provide an opening for a practice of

circumvention? Yes, filters use a limited set of features in order to classify network

traffic. Circumvention can be achieved by modifying transported traffic so that these

features match what the filter will allow through.

How can statistical models be used to capture the relevant details of filters?

Models were developed by determining probability distribution functions for each

 151

feature. An MCMC method was then used to estimate the parameters for these

distributions based on observed data.

How well do the statistical models of protocols fit the observed data? The

goodness-of-fit data provided in Chapter 5 shows how well the statistical models fit the

observed data across all features and protocols.

How can a circumvention tool be built using models of filters? This process is

detailed in Chapter 4. For each feature present in the model, an encoding algorithm was

applied to generate traffic conforming to the model representing what the filter would

allow through.

How effective is the circumvention tool against the modeled filters? An

evaluation is presented in Chapter rap5. To sum up the overall performance in a single

number, the percentage of favorable classifications when traffic encoded using the Dust

engine was classified by the simulated adversaries was 76%. More detailed information,

including all of the different tests run with different features and data sets is available in

Appendix C.

What are the characteristics of traffic carrying credible and relevant

information that allow it to be classified and filtered? In the final design concept that

resulted from the value-sensitive design process, the source of credible and relevant

information was RSS news feeds, which are transferred using the HTTP protocol. As

shown in Chapter 5, HTTP can be effectively classified by content, entropy, and packet

length.

How effective can a circumvention tool be in restoring access to this

information when evaluated against a simulated filter? In the final design concept that

resulted from the value-sensitive design process, the circumvention tool was a Pluggable

Transport for Tor. The goal of this tool is to be deployed with the Courier news reader

 152

for Android. However, due to the generic nature of Pluggable Transports, it can also be

used to transport network traffic for other applications that are integrated with either Tor

or directly with the Pluggable Transports framework. This opens up the possibility, for

instance, of reading news by accessing a news website through a web browser, rather

than using a news reader application. As is shown in Chapter 5, overall the predicted

effectives of the tool in circumventing network filtering for the simulated adversaries was

76%.

How efficient can a circumvention tool be in restoring access to this

information in terms of bandwidth overhead? In the final design concept that resulted

from the value-sensitive design process, the circumvention tool was a Pluggable

Transport for Tor. Tor has bandwidth requirements that are much greater than those of

RSS news feeds. At this point in the design process, the question of bandwidth overhead

was no longer a straightforward comparison. Instead, the technical challenge was to

provide sufficient performance for Tor to function. This was achieved, as all tests of the

Dust engine were completed using a functioning Tor network connection. Therefore,

bandwidth overhead was low enough to enable Tor to function and for resources to be

fetched over HTTP.

6.2 LIMITATIONS

In an ideal world, models could be built from perfect information with no missing

data. Network analysis could take place on every network and not just in the 4 countries

from the field study. Every filter device could be studied individually rather than just the

two used in the hardware study. When developing a circumvention tool, the filter model

would be based on complete information about the filtering conditions on the target

network. One of the limitations of this study is that such perfect information is not

 153

available. It is difficult to obtain filtering hardware, and field testing is limited to

countries where research collaborators can be found. These are limitations that face all

unobservable communication researchers. Fortunately, Bayesian statistical models are

well suited to dealing with incomplete information. Where information is missing about a

specific filter, it can be inferred from the observed data. While there is always the

possibility of outliers that do not fit the models derived from observable data, Bayesian

models improve with the amount of available data. All observed instances of filtering are

potential data for the model, so even a circumvention tool that fails to be effective for a

particular adversary provides information for improving the model.

Another potential limitation is that Bayesian statistical models may not be capable

of modeling all possible filters with sufficient accuracy to be effective. A method of

filtering could be hypothesized that is resistant to representation using a statistical model.

For instance, a filtering algorithm based entirely on constraints, such as one in which the

sole criteria for classification is whether or not the message is well-formed with respect to

a formal grammar, would require a semantic rather than statistical model. An example of

such a filter would be one that requires all HTTP traffic to be valid HTML. A statistical

model makes a poor approximation for these sorts of rules, and a semantic model such as

a formal grammar would be a better fit. There are some arguments that support the idea

that this limitation is not problematic in practice. First, the preliminary research shows

that filters use classification algorithms that can be modeled statistically. Second, the

Dust engine actually uses a hybrid semantic-statistical approach. The focus is on

statistical models because they bear the most relevance to the techniques used in

deployed filters. However, semantic constraints can be implemented as well if they are

existential in nature. Including required byte sequences is an example of an existential

semantic constraint that is currently supported by the Dust engine. Finally, if there are

 154

outliers that use advanced semantic techniques for classification, then they are relatively

rare in terms of deployment. Focusing on the filters that are being used to block access to

credible and relevant information to specific user communities means that these advanced

but rare devices have less impact on this research than they would on a research program

focusing on worst-case scenarios for circumvention tools.

In additional to the above limitations, there are also some limitations on the

current implementation that are practical compromises and diverge from the ideal

realization of the core concepts. It was determined during the value-sensitive design

process that perfect forward secrecy (PFS) was a necessary feature in order for Dust to be

taken seriously by the security community. However, there is a trade-off in adding this

feature inasmuch as PFS requires at least one round trip before any encrypted

communication can occur. This limits the scope of possible transports that can be used to

send information. For instance, HTTP is not a suitable transport because HTTP

connections have a single request followed by a single response, resulting in only one

round trip. By the time the round trip necessary to establish PFS is complete, the HTTP

connection is closed before any information could be sent. Therefore use of a transport

such as HTTP would require a different message architecture than the one used by Dust.

In Dust, each TCP connection must perform its own encryption handshake, whereas to

use HTTP it would be necessary to use the first HTTP connection to set up the

connection and subsequent connections to send information. Additionally, the specific

use case of Dust as a Pluggable Transport is one where features such as PFS might not

be so important. Dust as a Pluggable Transport wraps the Tor protocol and Tor could

provide PFS instead.

Another limitation is on the minimum size of transmission. For a TCP connection

to be used to send information, it must be long enough in terms of duration, flow, and

 155

packet size to complete a full handshake followed by at least one data frame. Connections

that are too short only provide filler and can never send actual information. If there are

too many connections of this short variety (for instance, all of them), then the rate of data

exchanged is too low to be useful. Therefore, the range of possible models is limited by

this bound. Ideally, this would not be the case and Dust would be able to use any model

whatsoever. Achieving this goal would require reconsidering the design requirements for

the protocol to make the right trade-offs between required security properties and the

limitations placed on the possible models by these requirements. In the use case of Dust

as a Pluggable Transport, this particular limitation is overshadowed by a larger limitation

of the Pluggable Transport subsystem. It assumes one transport connection for each

application connection. Therefore, although the Dust engine was originally designed to

split application traffic over multiple transport connections, this feature cannot be utilized

in the current Pluggable Transport framework. Therefore, the duration feature of models

is currently ignored. This is something that should be revisited in future work because

duration is a feature that can be used to successfully differentiate Tor traffic from various

encodings such as HTTP and HTTPS. However, this is something that must be changed

in the Pluggable Transport framework first before Dust as a Pluggable Transport can

make use of duration shaping capabilities.

6.3 IMPLICATIONS

From the multiple iterations of design, some themes stand out. First, there are

essentially two classes of stakeholders in the world of circumvention tools. There are the

actual users of the tools and there is the larger circumvention community, which includes

developers, funders, enthusiasts, journalists, and others. Some members of the larger

community are users of the tools and some are not. These two sets of stakeholders have

 156

somewhat different needs, but to some extent both must be satisfied with the same tool. If

the community does not accept the tool, adoption among end users is difficult. However,

writing tools for the larger community alone ignores the needs of the actual users of the

tools. Blending the needs of these two groups is a significant design challenge. A high-

level comparison of the two groups suggests that end users want tools that “just work”

with a minimal of change to existing behaviors and without the need to learn new

concepts and interfaces. What users want is essentially the existing Internet, but without

filtering, delivered over a filtered network. The circumvention community, however, has

more complex needs. They value privacy and security in their circumvention tools as

much as the actual circumvention of filtering. Open source software and cryptographic

protocols verified by professional cryptographers are high priorities. Proprietary

commercial solutions are viewed with distrust. The downside of tailoring solutions to this

community is that the tools are often difficult for end users to use. The emphasis on the

perfection of the privacy and security aspects of the software, aspects that end users do

not seem to place a high priority on, take development effort away from creating a simple

and intuitive interface that “just works”.

It is an adage in engineering that you can’t optimize for everything at once.

However, the needs of the end users can’t be optimized to the point that the

circumvention community rejects the tool. A proposed solution to this problem that was

implemented in the Dust design is to optimize for security and privacy only when it does

not require additional interaction with the user. The user interface must be able to be

developed orthogonally to the security and privacy decisions so that it can be optimized

for ease of use. An example of this problem and the proposed solution in the Dust engine

is the cryptographic handshake. Dust uses a cryptographic handshake in order for the

client and server to exchange an encryption key so that they can encrypt and decrypt the

 157

communications between them. In Dust, this encryption is not meant to provide any

security or privacy. It is only meant to randomize the content in the encryption layer so

that it is uniformly random before it is fed into the shaping layer. Uniformly random

content ensures that no characteristics of the distribution of the original content are

represented in the shaped content. Dust therefore used a very simple cryptographic

handshake. However, the refrain from the circumvention community has been that a

feature called “perfect forward secrecy” is required. What this feature entails, essentially,

is that the client and server use keys in the handshake that they then discard. This ensures

that if the client or server is compromised after the communication takes place (and the

adversary has a recording of the encryption communication), the adversary is unable to

recover the keys necessary to decrypt the communication after the fact. This attack makes

little sense in the context of Dust as the encrypted message is only intended to stay secret

just long enough to get past the filter. If the adversary discovers that the client and server

were communicating with Dust, there is no need to attempt to decrypt the message. The

adversary can simply add the server’s IP to the blacklist and further communication is not

possible with that server. Ensuring perfect forward secrecy in the Dust key exchange

requires doing a two-round key exchange instead of a single round. This increases the

complexity of the key exchange and therefore the code that implements it. It also restricts

the ways that Dust can communicate. For instance, messages cannot be sent

unidirectionally as the key exchange is bidirectional. However, since no changes to the

user interface were required, perfect forward secrecy was implemented. Overall, every

attempt was made to conform to the standards of practice for the circumvention

community, whether or not they made sense in this context, as long as they did not

impact interaction with the user.

 158

Finally, the ways in which users obtain access to credible and relevant

information appear to be regionally and culturally specific. This project started with an

American point of view that assumed social media was the primary source for credible

and relevant information for people around the world. Further research has shown that

there is a surprising diversity of information sources. The reasons for this are possibly a

complex mixture of cultural, economic, and political factors. Fortunately, the most

straightforward way to determine which medium users rely on for credible and relevant

information is to ask the users.

The implications of this research are changes to local filtering conditions for the

target user communities, as well to the global landscape of filtering devices and

circumvention tools. Thus far the landscape of filtering devices and circumvention tools

has been one of cycles of competing products. Network operators choose one of a

number of off-the-shelf products with limited configurability in order to meet the filtering

mandates that they are given. These devices primarily enable network operators to turn

on or off filtering based on a taxonomy of high-level filtering categories. They provide

problematic ontologies in which there is no transparency or accountability into how these

categories are defined. The fundamental control over filtering decisions is made by the

device manufacturers when they construct these ontologies and not by the network

operators or the users of the networks. Users that are negatively impacted by the

deployment of filtering devices in their everyday information-seeking behavior have a

similar choice of a number of off-the-shelf circumvention tools. These tools are designed

to be one-size-fits-all and are not generally customizable for the filtering conditions on

specific networks. Changes in the configuration of filtering devices prompts new versions

of the circumvention tools. Revised circumvention tools prompt changes in the

configuration of the filtering devices. Each side is attempting to create general solutions

 159

where filters must defeat all circumvention tools and circumvention tools must defeat all

filters.

The Dust approach to building circumvention tools disrupts this cycle of revising

the filtering and circumvention tools. With every change to the configuration of the

filters, a new model can automatically be built from the observed changes in filtering

conditions. This new model can be substituted for the old model without the need to

revise the circumvention tools. This allows for faster development and deployment as

well as increased customization. Rather than having one obfuscated protocol in use on all

networks, a custom encoding can be developed for each network based on filtering

conditions. This proliferation of encodings cannot be addressed by the manufacturers of

filtering devices simply by adding a few new categories - as has been done in the past

with conventional obfuscated protocols. Rather than adding a new protocol to the

network, the Dust engine adds a family of protocols derived from a large space of

possibilities. Dealing with this in a systematic way in the filtering hardware requires a

paradigm shift in the way filters are constructed. Simply reconfiguring a device will not

be sufficient. Instead, a new line of products must be developed, sold to network

operators, and deployed to replace the old devices that classified protocols based on static

properties. Common optimizations for scaling, such as only looking at the first packet of

a conversation, will no longer be viable. Instead, what will be required are new methods

for efficiently doing more sophisticated analysis without adversely affecting bandwidth

or latency beyond acceptable limits.

In the short term, users will benefit from regaining access to credible and relevant

information while the new filtering hardware is being developed and the network

infrastructure is being upgraded. With the current product upgrade cycles for national-

level network infrastructure, the short term could be measured in years.

 160

Long-term monitoring of traffic to find statistical anomalies will require long-

term data storage and skilled analysts to look for anomalous patterns, increasing both the

number of devices needed to filter the same amount of traffic and the staff required to

operate the devices. In the long term, the dialectic between filtering and circumvention

moves from one of technology to one of information. In a contest between a filter and a

circumvention tool, the one with the better model for how to accurately classify traffic

will win. The long-term outcome will therefore depend on which is easier to do, to

encode blocked traffic so that it resembles allowed traffic or to write a detection

algorithm that can differentiate encoded traffic from allowed traffic. While this research

does not claim to be an end to network filtering, it advances the state of circumvention to

the point that current filtering methods are no loner viable, requiring a paradigm shift in

the design of filters.

Another issue to consider when discussing the implications of this research is the

possibility of potential negative consequences of this research, such as misuse, collateral

damage, and unintended effects. This is an issue that faces the development of all

technological interventions. Circumvention research commonly takes a neutral approach

regarding unintended consequences. However, a value-sensitive-design perspective

necessitates deeper consideration of the potential for negative impact. The most direct

negative impact is that of intentional misuse of the technology for unintended uses. It is

often the case that computer security research intended for defensive purposes can also be

used for offensive purposes. In the case of this work, no specifically offensive uses are

obvious. The techniques presented here do not infiltrate, disable, damage, or destroy

filtering hardware. The Dust engine essentially provides a reliable communications

channel in a hostile environment and therefore serves more of a utility function similar to

radios, telephones, and the Internet.

 161

Of course communication channels of all sorts can be used for a variety of

purposes, both positive and negative, including criminal activities and the coordination of

activities, contrary to the project’s stated core value of providing access to credible and

relevant information. Addressing these issues as they relate to filtering circumvention

technology is a matter of examining how filtering technology is used. Some filtering is

used to curtail criminal activity, specifically by shutting down illegal websites. In some

cases, circumvention technology has been used to bypass this filtering, thereby enabling

criminal activity. However, blocking specific websites is a targeted attack. Filtering

circumvention tools have only been able to provide at best a temporary relief from

targeted attacks. When specific websites are targeted, the servers that run them can

eventually be found and shut down and the server operators arrested. Even sophisticated

designs such as Tor are vulnerable to long-term intersection attacks on specific users

[23]. The current practice of protocol-based filtering, however, is a wide net, blocking all

users of a protocol regardless of whether their use is legitimate or criminal. It is this type

of filtering that Dust prevents and not targeted attacks against specific users. Therefore

there is not a high risk of its appropriation for criminal activities as the problem it solves

is one that is more salient for everyday information seekers than for criminal

organizations.

Regarding collateral damage, a likely effect if adoption of Dust technology

becomes widespread would be reconfiguration of the filters to attempt to block Dust

traffic. This could possibly result in collateral damage in the form of an increase in the

false positive rate of the filter, causing additional traffic to be blocked that was not

blocked before. This sort of escalation of filtering conditions as a response to

circumvention has been seen previously. For instance, switching a website where

individual pages are being selectively filtered from HTTP to HTTPS defeats the selective

 162

blocking of pages and can case the whole site to be blocked [19]. However, since Dust is

adaptive, configuring filtering settings will only provide a temporary solution. If the Dust

design is successful, then repeated reconfiguration will eventually result in blocking all

traffic, effectively disconnecting the network. However, widespread deployment of Dust

is outside of the scope of this project. The circumvention tools being designed are

intended for small-scale deployment that would be unlikely to result in reconfiguration of

the filtering hardware.

163

6.4 FUTURE WORK

In terms of model building, the present work is the starting point for what could

be a lifetime of research into building models to simulate the characteristics of network

traffic. Future research into model building could explore three categories of variation

from this starting point: more complex models, additional machine learning methods, and

larger datasets. The models presented here are the simplest models that were found to

achieve adequate performance. Therefore, simple distribution functions were used such

as multinomial and exponential distributions. More complex mixtures of multiple

distributions and hierarchal models where the distribution parameters are also

distributions rather than scalars are also possible. More complex models offer additional

challenges inasmuch as adding complexity can cause a model to overfit the data, resulting

in excellent goodness-of-fit scores for the training data but poor performance in

predicting outcomes for other datasets. Therefore, alternative metrics should be

considered for evaluating more complex models that balance complexity with goodness-

of-fit. This work has used a Bayesian method of distribution parameter estimation by

means of the Markov Chain Monte Carlo (MCMC) method. This is just one method from

a diverse field of machine learning algorithms used for classification problems. Other

methods such as support vector machines (SVM) are often employed for similar feature-

based categorical classification tasks. This rich field of study could be mined for a

diverse array of techniques for classifying network traffic. Similarly, the byte sequence

extraction technique could possibly improved upon using any of the numerous techniques

from the field of text data mining. While there are a number of different modeling and

machine learning techniques to draw from to extend and expand this work, significant

progress in building higher performance models may be obtained using the present

164

techniques with larger datasets. This dissertation used data for HTTP and HTTPS from a

multi-country field study. While this is a large quantity of collected data relative to other

projects in the field, it is a small sample of the overall volume of network traffic on the

Internet. Data collection could be extended in several dimensions: more countries, more

protocols, more sites visited for each protocol, more instances of data collection, and

collection over greater time periods and geographic areas within each country.

Another area where more research could be done is in the determination of final

classification scores through the combination of scores from the separate features. In the

current implementation, features are considered to be independent and the scores from

each feature are added. Each feature gets one “vote” and the classification with the most

votes wins. An alternative means of scoring would be to incorporate the confidence

measure implicit in each feature score. If the scores across classifications for one feature

vary widely, this indicates a higher confidence than if the scores are very close. However,

scores cannot be compared across features because they fall in different ranges. In order

to incorporate this information into the final score, the scores would need to be

normalized to a common range across all features. A simple way to do this would be to

examine the variance and standard deviation for each feature and normalize scores

accordingly. However, there are also a variety of more complex techniques. For instance,

principal component analysis (PCA) can be used to provide several enhancements, such

as normalizing the scores, reducing the dimensionality, and exposing the covariance

between features that were previously assumed to be independent. There is a diverse

space of scoring methods that could be researched to provide boosts in the accuracy of

the adversaries.

165

This research represents a significant advance in the state of the art for

circumvention technology. It also reveals the limitations of the current methods and tools

used for circumventing Internet filtering. In future work, the capabilities of the tools will

be expanded to allow for further research. Most obfuscating protocols currently use a

single IPv4 TCP connection. As a result, protocols such as HTTP and HTTPS have been

studied extensively. More capable tools would allow for exploration of transports that use

UDP, IPv6, and multiple TCP connections. With multiple TCP connections, both

splitting up traffic over simultaneous parallel connections and over a series of

connections could be explored. This advancement would also allow for transporting

tunneled connections over a mixture of different transport connections. For instance, a

mix of different protocols could be used, or even a mixture of TCP connections and UDP

packets. This use of ensemble connections opens possibilities for new types of modeling.

In addition to modeling the properties of individual connections, the properties of

mixtures could be modeled. Properties such as the length of connections and the

probability and timing of different types of traffic could be modeled in order to

synthetically reproduce a mixture of traffic resembling “normal” Internet traffic. Such a

research program would help elucidate the open question of what “normal” Internet

traffic looks like. Answering this question will require field work to observe and sample

network traffic to establish a baseline.

In addition to expanding the capabilities of the tools in general, the capabilities of

Dust can also be extended and optimized for efficiency. Currently, Dust always shapes all

properties for maximum obfuscation. However, shaping each property adds a

performance penalty, and not all properties are actually used for filtering by all filters. A

modular Dust engine that shapes only relevant properties could have significant

166

performance gains, particularly when packet timing can remain unshaped. The models

used by Dust could also be optimized. Currently, the simplest possible models are used

for each property, consisting of a single probability distribution. More complex models

such as mixture models could provide better fit to the target empirical distribution. The

space for exploration here is open ended. In addition to Bayesian modeling, other

methods of statistical modeling such as machine learning methods could be used to

generate target distributions. How to find and identify the optimal distributions for each

property is an open research question. Another open research question is how to

optimally encode to match the target distribution for each property. For instance, in the

case of the content distribution Dust currently uses Huffman encoding. Other methods

such as arithmetic coding could be used instead. The literature on coding theory and data

compression contains several methods that could be tried and compared in the search for

an optimal encoder. There is similar research that could be done on all of the properties.

The design and evaluation of circumvention tools using Dust is at the beginning

of a long program of research into the pragmatic dimension of circumvention tools. The

current research has undergone numerous revisions and explored the intersection between

the needs of users and the capabilities of the current circumvention tool ecosystem. As

the capabilities of tools are expanded, this will open up further opportunities for value-

sensitive design research. The most significant design compromise motivated by

technical limitations rather than user needs came from the bandwidth requirements

necessary to support Tor traffic. This was a necessary compromise as integration with

Tor is the dominant method of deploying new obfuscating protocols. However, it also

constrains obfuscation research in terms of the optimal efficiency that is possible. There

is a possible research opportunity in developing obfuscation techniques for lower

167

bandwidth and higher latency applications than what is possible when integrated into Tor.

As Tor has developed its internal obfuscation technology in the form of Pluggable

Transports, there is a possibility that other projects with different bandwidth and latency

requirements will also utilize these transports. If so, and if users adopt these other

systems, then that would provide an opportunity for further value-sensitive design

research on obfuscating transports for circumvention tools with a different set of

requirements and constraints.

168

Appendix A – Field Study Data

The data for the field study has been rendered as a series of charts that can be

obtained as a separate PDF file at http://blanu.net/AppendixA.pdf.

169

Appendix B – Full Size Bytes Sequence Images

Full size images of the byte sequence analysis results can be obtained as a

separate PDF file at http://blanu.net/AppendixB.pdf.

170

Appendix C – Tables of Evaluation Results

Complete tables for the evaluation results can be obtained as a separate PDF file

at http://blanu.net/AppendixC.pdf.

171

Appendix D – Source Code for Software

All of the tools developed for use in the course of this research are open source

and available for use by other researchers under a permissive license. The software can

be downloaded by the Github source code hosting website. The source repositories for

the tools can be found at the following locations:

• Dust-tools – https://github.com/blanu/Dust-tools

• CensorProbe – https://github.com/blanu/CensorProbe

• Adversary Lab – https://github.com/blanu/AdversaryLab-offline

• Dust – https://github.com/blanu/Dust

• Dust patch for obfs4proxy – https://github.com/blanu/obfs4

The Dust-tools package is discussed in greater detail in Appendix E.

172

Appendix E – Hardware Study Testing Tools

For the hardware study, a set of tools was developed for testing the capabilities of

filtering hardware. These tools were released as open source under the name “Dust-

tools”. Information for downloading the software created in the course of this

dissertation, including Dust-tools, is available in Appendix D. There are two basic tools

in the package: Replay and Shaper. Each is discussed in turn in this section, as well as

additional utilities useful for debugging.

REPLAY

Replay takes a recorded conversation and replays it, possibly with variations. This

is used to detect bytestring matching in the filter. By varying the content of the recorded

conversation, bytestrings used by the filter can be detected. The Replay tool requires a

recorded conversation in the form of a Packetstream file. Packetstream files are a cross-

platform format which can be obtained by converting .pcap files. The .pcap files can be

recorded using a packet capture tool such as Wireshark, tcpdump, or CensorProbe.

Converting .pcap fils to the Packetstream format requires the Dust-tools-pcap software

package (included in the main Dust-tools code repository), which only works on Linux.

However, the Replay tool is cross-platform.

The replay client and server can take an optional mask file which specifies

variations. The mask file is in the following format:

offset,byte offset,byte offset,byte ...

offset,byte offset,byte offset,byte ...

...

173

Each line maps to a packet in the replayed conversation. The first line corresponds

to the first packet and so on. Each line contains a sequence of offset and byte pairs. The

offset specifies the index within the packet to modify. The byte specifies the value to set

for that offset. For instance, 0,32 would set the first byte (index 0) of the given packet to

the value 20, corresponding to an ASCII space.

Example Mask File

 0,0 1,0 2,0

0,32 7,32 12,32

The above sets the bytes at the 0, 1, and 2 positions of the first packet to 0 (null)

and the 0, 7, and 12 positions of the second packet to 32 (space). The usefulness of the

replay tool is in detecting bytestrings used by filters to classify traffic. For instance,

HTTP traffic starts with a byte sequence such as, “GET /favicon.ico HTTP/1.0”. Perhaps

the filter is looking for "GET" at the beginning of the first packet to identify HTTP

traffic. We can test this hypothesis by creating a mask file such as, “0,0 1,0 2,0”. This

sets the first three bytes of the first packet to 0 (null). We then use the replay tool to

replay the HTTP traffic, but with those three bytes set to 0. If we were to view this

replayed traffic it would look like, “??? /favicon.ico HTTP/1.0”. The question marks

represent null values that cannot be printed. If the filter fails to classify this traffic as

HTTP then the hypothesis that it is matching "GET" at the beginning of the first packet is

confirmed.

174

SHAPER

Shaper takes a protocol model and generates random traffic that conforms to that

model. This is used to determine if the protocol models are accurate with respect to a

specific filter. If the filter treats actual traffic and Shaper traffic the same, then the model

is accurate with respect to that filter. For instance, if the filter blocks both actual and

Shaper HTTP traffic, and passes through both actual and Shaper HTTPS traffic, then the

HTTP and HTTPS models capture the characteristics that the filter is using to distinguish

HTTP traffic from HTTPS traffic.

The Shaper tool requires a protocol model in the form of an Observation file.

Observation files are a cross-platform format which can be obtained by converting .pcap

files or using live traffic capture. The .pcap file recording step can be skipped by

capturing live traffic directly to Observation files. Both converting .pcap files and

recording live traffic require the Dust-tools-pcap package (included in the main Dust-

tools code repository), which only works on Linux. However, the Shaper tool is cross-

platform.

The shaper-update utility is used to capture live traffic and convert .pcap files into

Observations and can be run multiple times on the same Observation file to aggregate

observed traffic. Once the Observation file has been prepared, the Shaper tool can be

used to generate traffic. The Shaper consists of a client and a server which are both given

the same Observation file. The client and server will exchange traffic which conforms to

the model specified in the Observation file forever until interrupted with Ctrl-C. This can

use a lot of bandwidth, so they should only be run for a short time and then stopped. The

accuracy of the models can be determined by looking at how the filter treats the Shaper

traffic as compared to the actual traffic from which the models were derived.

175

ADDITIONAL UTILITIES

Dust-tools contains additional utilities for working with Observation files. The

shaper-show utility displays the contents of an Observation file. This can be useful for

debugging models. The shaper-export utility converts the contents of an observation file

to a CSV file. This can be useful for making graphs of models.

176

 References

1. Bittau, A., Hamburg, M., Handley, M., Mazieres, D., and Boneh, D. The case for
ubiquitous transport-level encryption. 19th USENIX Security Symposium., (2008).

2. Boesgaard, C. Unlinkability and Redundancy in Anonymous Publication Systems.

Denmark, 2004.

3. Cisco. Using NetFlow Sampling to Select the Network Traffic to Track. In Cisco

IOS XE NetFlow Configuration Guide. San Jose, CA, 2009.

4. Clarke, I., Sandberg, O., Wiley, B., and Hong, T.W. Freenet: A Distributed

Anonymous Information Storage and Retrieval System. In Designing Privacy
Enhancing Technologies. Springer-Verlag, Berlin, 2001, 46–66.

5. Dingledine, R., Mathewson, N., and Syverson, P. Tor: The second-generation

onion router. In: Proc. of the 13th USENIX Security Symposium, (2004).

6. Dingledine, R. and Mathewson, N. Design of a blocking-resistant anonymity

system Tor Project technical report , Nov 2006. Design, (2006), 1–24.

7. Dingledine, R. Tor and circumvention : Lessons learned. The 26th Chaos

Communication Congress, (2009).

8. Dyer, K.P., Coull, S.E., Ristenpart, T., and Shrimpton, T. Format-Transforming

Encryption : More than Meets the DPI. .

9. Dyer, K.P., Coull, S.E., Ristenpart, T., and Shrimpton, T. Protocol

Misidentification Made Easy with Format-Transforming Encryption Categories
and Subject Descriptors. Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, (2013).

177

10. Friedman, B., Howe, D.C., and Felten, E. Informed Consent in the Mozilla
Browser: Implementing Value-Sensitive Design. Proceedings of the 35th Hawaii
International Conference on System Sciences, IEEE Computer Society (2002),
247.

11. Friedman, B. Value-sensitive design. Interactions 3, 6 (1996), 16–23.

12. Friedman, B., Denning, T., & Kohno, T. Security Cards: A Security Threat

Brainstorming Toolkit. 2013. http://securitycards.cs.washington.edu/.

13. Granerud, A.O. Identifying TLS abnormalities in Tor. Information Security,

(2010).

14. Hand, S. and Roscoe, T. Mnemosyne: Peer-to-Peer Steganographic Storage.

IPTPS, Springer-Verlag (2002), 130–140.

15. Harrison, D., Ciani, A., Norberg, A., and Hazel, G. Tracker Peer Obfuscation.

2008, 1–8. http://bittorrent.org/beps/bep_0008.html.

16. Hevia, A. and Micciancio, D. An Indistinguishability-Based Characterization of

Anonymous Channels. PETS, Springer-Verlag (2008), 24–43.

17. Hjelmvik, E. Breaking and Improving Protocol Obfuscation. 2010.

18. Houmansadr, A., Brubaker, C., and Shmatikov, V. The Parrot Is Dead: Observing

Unobservable Network Communications. 2013 IEEE Symposium on Security and
Privacy, (2013), 65–79.

19. Hunter, P. Pakistan YouTube block exposes fundamental Internet Concern that

Pakistani action affected YouTube access elsewhere in. Computer Fraud &
Security 2008, 4 (2008), 10–11.

20. Kadianakis, G. obfs2. 2013.

178

21. Kopsell, S. and Hillig, U. How to achieve blocking resistance for existing systems

enabling anonymous web surfing. Privacy in the electronic society, ACM Press
(2004), 47.

22. Leidl, B. Obfuscated-OpenSSH README. 2009, 1–6.

https://github.com/brl/obfuscated-openssh/blob/master/README.obfuscation.

23. Øverlier, L. and Syverson, P. Locating Hidden Servers. 2006 IEEE Symposium on

Security and Privacy, (2006).

24. Perng, G., Reiter, M.K., and Wang, C. Censorship Resistance Revisited. IH,

Springer-Verlag (2005), 62–76.

25. Pfitzmann, A. and Kohntopp, M. Anonymity, Unobservability, and Pseudonymity

– A Proposal for Terminology. Anonymity, Springer-Verlag (2001), 1–9.

26. Sennhauser, M. The state of iranian communication. 2009. http://emsenn.com/wp-

content/uploads/2009/07/SoIC-1.21.pdf.

27. Sennhauser, M. The state of iranian communication. Response, (2009).

28. Serjantov, A. Anonymizing censorship resistant systems. IPTPS, Springer-Verlag

(2002), 111–120.

29. Topolsky, R.M. In the Matter of the Petition of Free Press et al. for Declaratory

Ruling that Degrading an Internet Application Violates the FCC’s Internet Policy
Statement and Does Not Meet an Exception for “Reasonable Network
Management.” 2007.

30. Waldman, M. and Mazieres, D. Tangler: a censorship-resistant publishing system

based on document entanglements. Computer and Communications Security,
ACM Press (2001), 126–135.

179

31. Waldman, M., Rubin, A.D., and Cranor, L.F. Publius: A robust, tamper-evident,

censorship-resistant web publishing system ∗. 9th USENIX Security Symposium,
(2000).

32. Message Stream Encryption (aka PHE) format specification. 2006, 1–7.

http://wiki.vuze.com/w/Message_Stream_Encryption.

33. Obfuscated TCP. 2010. http://en.wikipedia.org/wiki/Obfuscated_TCP.

34. Internet in Chains: The Front Line of State Repression in Iran. 2014.

180

Vita

Brandon has worked for the last ten years in open source and peer-to-peer

software, both in community projects and tech startups. He founded a number of open

source peer-to-peer software projects, including Freenet, Tristero, Alluvium, and Project

Snakebite. He has also worked in peer-to-peer Interent video delivery at Swarmcast as

Senior Engineer and then at BitTorrent as the Director of Product Management.

Email: brandon@blanu.net

This dissertation was typed by Brandon Keith Wiley.

