
Blocking-Resistant Protocol Classification Using 
Bayesian Model Selection 

Brandon Wiley 
 
 

 School of Information, University of Texas at Austin 
1616 Guadalupe #5.202 

Austin, TX 78701-1213 
brandon@ischool.utexas.edu 

Abstract. Internet censorship techniques have become 
increasingly sophisticated by utilizing Deep Packet Inspection 
for the classification and filtering of connections by protocol. 
The response from circumvention tools has been to implement 
blocking-resistant protocols that resemble existing protocols such 
as SSL or new protocols such as that used by obfsproxy. So far 
this approach has created periods of time where censorship is 
circumvented between when the new protocol is deployed and 
new filtering rules are written to distinguish encoded 
circumvention traffic from non-circumvention traffic. This paper 
describes a method for dynamic classification of protocols based 
on Bayesian models created from sampled traffic. This approach 
allows for the automated testing of blocking-resistant protocol 
designs against simulated passive attackers. 

Keywords: censorship resistance, blocking resistance  

1   Introduction 

The evolution of Internet censorship has been a cycle of increasingly 
sophisticated filtering techniques inspiring new circumvention techniques. 
Shallow Packet Inspection filtered based on the IP addresses in packet 
headers, leading to the development of anonymizing proxy networks that hide 
the true destination IP address by first routing through proxies. Filtering 
technology is now employing Deep Packet Inspection (DPI) techniques that 
can filter out specific Internet protocols. [13] This has resulted in censorship-
resistant services such as anonymizing proxies being specifically targeted to 



be blocked or throttled. In order to provide censorship resistance, blocking 
resistance is now necessary to defeat DPI filtering. 

Currently, new blocking-resistant protocols are developed in response to 
filtering rules that are created to detect the blocking-resistant protocols. Once 
the encoded traffic can be identified from other traffic, it is easily blocked by 
manually coded firewall filtering rules. However, before it can be blocked, it 
must be identified by protocol identification experts that have examined the 
network traffic. 

An alternative approach to manual development of firewall filtering rules is 
to use an automatic classifier. Given labeled samples of traffic generated by 
different protocols, a computational model can be constructed which can 
generate predictions for traffic samples with characteristics matching those of 
each protocol. Unlabelled traffic data can then be compared against each 
model and the most probable model can be selected. This allows for 
probabilistic classification of traffic without the need for manual intervention. 
The benefit of this approach is that it allows multiple obfuscating protocols to 
be tested for effectiveness before being deployed in the field. While this 
approach cannot guarantee that a obfuscating protocol is undetectable, it 
offers a first pass for evaluating obfuscating protocols by ensuring that they 
are not easily distinguishable by examining statistical distributions of key 
properties such as length, timing, and entropy. In order to evaluate the 
efficacy of the obfuscating protocols against blocking, a framework for 
evaluating blocking-resistant transports was created. The framework, simply 
called “blocking-test”, provides a fully automated testing solution from traffic 
generation to reporting. 

2   Related Work 

While a network of proxy nodes can provide protection against destination IP 
blacklists, they are still vulnerable to various forms of DPI protocol 
fingerprinting. This problem is dealt with by Kopsell, who proposes a method 
to extend existing anonymous publishing systems to bypass blocking, a 
property referred to as "blocking resistance" [5]. Kopsel’s threat model 
assumes that the attacker has control of only part of the Internet (the censored 
zone), that some small amount of unblockable inbound information can enter 
the censored zone (perhaps out of band). The nodes in Kopsell’s system are 
volunteer anonymizing proxies that clients communicate with over a 
steganographic protocol in order to obtain access to a censorship-resistant 
publishing system. Clients obtain an invitation to the network, including the 
IP addresses of some proxy nodes, through a low-bandwidth, unblockable 
channel into the censored zone. 



Kopsell’s proposal used SSL as the communication channel. Unfortunately, 
while SSL does not offer blocking resistance when SSL traffic is specifically 
targetted. Tor has suffered blocking by two attacks because of its use of SSL. 
One targeted unique characteristics of Tor’s SSL handshake specifically and 
the other was a throttling of all SSL traffic [2][9]. While Tor has subsequently 
increased the steganographic strength of its SSL handshake by making it 
resembled Apache’s SSL handshake, this does not prevent against an attack 
that blocks or throttles all SSL traffic. 

2.1   Obfuscated Protocols 

An obfuscated protocol, in contrast to a secure protocol, provides protection 
from the attacker only so long as the attacker does not know the details of the 
encoding. For instance, BitTorrent clients have implemented three obfuscating 
protocols in order to prevent filtering and throttling of the BitTorrent protocol, 
the most common of which in current usage is Message Stream Encryption 
(MSE) [7]. Analysis of packet sizes and the direction of packet flow have 
been shown to identify connections obfuscated with MSE with 96% accuracy, 
primarily through analysis of the statistical properties of the key exchange [4]. 

Obfuscated TCP (ObsTCP) has gone through several versions, the last of 
which used DNS records to transmit the encryption keys [8]. This required the 
attacker to correlate separate communication streams, extracting the keys 
from the DNS packets and then applying them to the TCP packets. However, 
an analogous attack has already been demonstrated in the blocking of 
BitTorrent traffic through monitoring of the tracker protocol traffic to obtain 
the ports of the BitTorrent protocol connections [10][3]. A similar proposal 
called tcpcrypt is also easily defeated by looking for static strings in the 
handshake [1]. 

The most sophisticated option is obfuscated-openssh, which replaces the 
SSH handshake portion of an SSH protocol connection with a minimal 
blocking-resistant encrypted protocol [6]. This handshake is encrypted with a 
key that is generated by iterated hashes of a seed that is added to the 
beginning of the encrypted part of the handshake. The iteration number is 
chosen to be high enough that key generation is slow, so the blocking 
resistance of this technique relies on key generation being too expensive to 
scale to all connections simultaneously. However, modern filters are capable 
of statistically sampling packets and processing them offline [11]. 

Dust is an Internet protocol designed to provide blocking resistance against 
DPI techniques. [12] Dust uses a novel out-of-band handshake to establish a 
secure, blocking-resistant channel for communication over a filtered channel. 
Once a secure channel has been established, Dust packets are 
indistinguishable from random packets and so cannot be filtered by normal 



techniques. For attackers that filter random packets an optional 
unrandomization step is used to give the packets arbitrary statistical 
properties. 

3   Methodology 

The first step in building the statistical models was to generate sample traffic. 
Since the majority of Tor traffic is presumed to be web traffic, traffic was 
generated using a Firefox web browser driven by a Selenium script, allowing 
for realistic web traffic including traffic from embedded images, CSS, and 
dynamic elements driven by Javascript such as AJAX connections. Firefox 
was selected because it can have its proxy configuration programmatically 
altered by the Selenium script. It could therefore be configured to generate 
either normal HTTP/HTTPS traffic or to route the web traffic through a 
proxy. 

Three different configurations were used to generate traffic: no proxy, 
using Tor with obfsproxy as a proxy, and using Dust as a proxy. The trace 
from the traffic generated by Firefox fetching the web pages using these 
configurations was captured, divided into individual streams, tagged based on 
protocol by filtering to include only the packet sent to ports of interest, either 
SSL or obfsproxy or Dust, and put into traffic capture files. These files were 
then processed to extract the characteristics used by the models. These 
characteristics were packet length, relative packet timing (the interval between 
packets), and entropy. For length and timing, the values for all packets were 
extracted. For entropy only the first packet was used as the protocols that were 
examined are encrypted after their handshakes and so have maximum entropy 
after the first few packets. The first packet therefore serves as a better 
indicator than would entropy analysis of the entire packet stream. 

The processed packet streams were then used to build Bayesian predictive 
models. The length detector used a multinomial likelihood with a frequency 
count for each observed packet length from 0 to 1500 and an uninformative 
Dirichlet prior. The timing model used a Poisson likelihood to generate each 
interval between packets in milliseconds, with an uninformative gamma prior. 
The entropy model used a Gaussian likelihood to represent a single entropy 
number for the first packet, with a Gaussian prior for the mean and a uniform 
prior from 0 to 100 for the standard deviation. 

The Bayesian models, once trained on the observed data, were used to 
generate predictions. For each model 1000 predictions were generated. For the 
length model the predictions were 1400 counts, one for each of the packet 
lengths 0 to 1500, which was the maximum observed packet length (and a 
common MTU). For the timing model the predictions were 1000 packet 



timing intervals. For the entropy the predictions were a single number 
indicating the entropy measurement of the first packet. 

Once the predictions were generated, new traffic was captured and 
processed. The empirical observations from the new traffic were compared 
against the predictions from the models. The difference between the empirical 
and predicted traffic was squared to generate a match score. Scores were 
calculated over all 1000 predictions for each model. The model with the 
highest cumulative score was selected as the most probable match for the new 
traffic being analyzed. Model selection was done independently for each 
packet characteristic so that both the detectability of the protocol and the 
effectiveness of each detector could be measured. Finally, scores were 
generated showing the accuracy of each detector, the effectiveness of each 
encoder including false positives and false negatives, and the mutual 
distinguishability of each pair of protocols. 

5.   Results 

Three protocols were tested: Dust, SSL, and obfsproxy, an implementation of 
obfuscated-openssh which acts as a pluggable transport for the Tor protocol. 
Three detectors were used: length, timing, and entropy. Overall across all 
three protocols, the length detector was 16% accurate, the timing detector was 
89% accurate, and the entropy detector was 94% accurate at correctly 
classifying protocols. This was particularly interesting as the length and 
timing detectors used the entire packet streams, whereas the entropy detector 
achieved superior accuracy using only the first packet. 

In terms of the different protocols, SSL was correctly identified 25% of the 
time, 70% of the time other protocols were misidentified as being SSL, and 
5% of the time SSL was misidentified as another protocol. obfsproxy was 
correctly identified 55% of the time, 10% of the time other protocols were 
misidentified as being obfsproxy, and 35% of the time obfsproxy was 
misidentified as another protocol. Dust was correctly identified 48% of the 
time, 4% of the time other protocols were misidentified as being Dust, and 
48% of the time Dust was misidentified as another protocol. In terms of 
protocol distinguishability across dectectors, obfsproxy was distinguishable 
from SSL 96% of the time, obfsproxy was distinguishable from Dust 98% of 
the time, and Dust was distinguishable from SSL 56% of the time. 

In terms of overall distinguishability, the results of the evaluation show that 
Dust is less distinguishable from SSL than obfsproxy. In fact, Dust was never 
correctly identified the length and timing detectors. Only the entropy detector 
was able to identify Dust traffic. Overall, Dust was correctly identified 48% 
of the time and obfsproxy 55% of the time, showing an 7% difference in 
distinguishability across all detectors. 



6.   Conclusion 

A Bayesian modeling approach was implemented for the automatic 
classification of network traffic into protocols using supervised learning from 
sample traffic. This method proved to be an effective means of distinguishing 
SSL, obfsproxy, and Dust traffic. It allowed for the effectiveness of different 
detectors to be compared, as well as the effectiveness of different encodings at 
defeating these detectors. 

Evaluation of the obfuscating protocols through the construction of 
Bayesian models of the different packet characteristics used by DPI filters has 
shown that different encodings provide different levels of effectiveness in 
resisting against filtering. A protocol such as Dust that provides obfuscation 
of multiple packet characteristics was shown to be more effective than a 
protocol such as obfsproxy that provides only encryption of the packet 
contents. As packet length and timing were shown to be effective methods of 
classifying packets by protocol, future blocking-resistant protocols should 
incorporate measures to hide these packet characteristics. Additionally, 
entropy measurement, a type of filtering not currently in widespread use, was 
shown to be effective and inexpensive to implement when only the first 
packet of each conversation is used. Future obfuscating protocols, need to 
incorporate defenses against this type of filtering as well. 

Those wishing to examine or use the blocking-test framework for 
academic or practical purposes can find the source code for its 
implementation at https://gitweb.torproject.org/user/blanu/blocking-test.git. 

7.   Acknowledgments 

This work was made possible by support of Google Summer of Code, the Tor 
project, the Electronic Frontier Foundation, and Luis Francisco-Revilla.  

References 

1. Bittau, A., Hamburg, M., Handley, M., Mazieres, D., and Boneh, D. The 
case for ubiquitous transport-level encryption. 19th USENIX Security 
Symposium., (2008). 

2. Dingledine, R. Tor and circumvention: Lessons learned. The 26th Chaos 
Communication Congress, (2009). 

3. Harrison, D. BEP 008: Tracker Peer Obfuscation. Retrieved from: 
http://www.bittorrent.org/beps/bep_0008.html. 



4. Hjelmvik, E and John, W. Breaking and Improving Protocol Obfuscation. 
Department of Computer Science and Engineering, Chalmers University of 
Technology, Technical Report No. 2010-05, ISSN 1652- 926X. (2010) 

5. Kopsell, S., Hilling, U.: How to Achieve Blocking Resistance for Existing 
Systems Enabling Anonymous Web Surfing. In: Proceedings of the 
Workshop on Privacy in the Electronic Society. pp. 103-115. ACM Press, 
New York (2004) 

6. Leidl, B. Obfuscated-OpenSSH README. Retrieved from: 
https://github.com/brl/obfuscated-
openssh/blob/master/README.obfuscation. (2010) 

7. Message Stream Encryption. 
http://wiki.vuze.com/w/Message_Stream_Encryption (2006) 

8. Obfuscated TCP. Wikipedia. Retrieved from: 
http://en.wikipedia.org/wiki/Obfuscated_TCP. (2010) 

9. Sennhauser, M.: The State of Iranian Communication. 
http://diode.mbrez.com/docs/SoIN.pdf (2009) 

10. Topolsky, R. Comments of Robert M. Topolsky In the Matter of Petition 
of Free Press et al. for Declaratory Ruling that Degrading an Internet 
Application Violates the FCC’s Internet Policy Statement and Does Not 
Meet an Exception for “Reasonable Network Management”. Federal 
Communications Commission WC Docket No. 07-52, 08-7. (2008) 

11. Using NetFlow Filtering or Sampling to Select the Network Traffic to 
Track. Retrieved from: 
http://www.cisco.com/en/US/docs/ios/netflow/configuration/guide/nflow_fi
lt_samp_traff.html#wp1064305. (2006) 

12. Wiley, B. Dust: A Blocking-Resistant Internet Transport Protocol. 
http://blanu.net/Dust.pdf (2011) 

13. Winter, P. and Lindskog, S.: How China Is Blocking Tor. Karlstad 
University. (2012) 

 


